黑马-Cloud21版-高级篇09:多级缓存

2024-09-02 05:04

本文主要是介绍黑马-Cloud21版-高级篇09:多级缓存,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

多级缓存

0.学习目标

1.什么是多级缓存

传统的缓存策略一般是请求到达Tomcat后,先查询Redis,如果未命中则查询数据库,如图:

在这里插入图片描述

存在下面的问题:

  • 请求要经过Tomcat处理,Tomcat的性能成为整个系统的瓶颈

  • Redis缓存失效时,会对数据库产生冲击

多级缓存就是充分利用请求处理的每个环节,分别添加缓存,减轻Tomcat压力,提升服务性能:

  • 浏览器访问静态资源时,优先读取浏览器本地缓存
  • 访问非静态资源(ajax查询数据)时,访问服务端
  • 请求到达Nginx后,优先读取Nginx本地缓存
  • 如果Nginx本地缓存未命中,则去直接查询Redis(不经过Tomcat)
  • 如果Redis查询未命中,则查询Tomcat
  • 请求进入Tomcat后,优先查询JVM进程缓存
  • 如果JVM进程缓存未命中,则查询数据库

在这里插入图片描述

在多级缓存架构中,Nginx内部需要编写本地缓存查询、Redis查询、Tomcat查询的业务逻辑,因此这样的nginx服务不再是一个反向代理服务器,而是一个编写业务的Web服务器了

因此这样的业务Nginx服务也需要搭建集群来提高并发,再有专门的nginx服务来做反向代理,如图:

在这里插入图片描述

另外,我们的Tomcat服务将来也会部署为集群模式:

在这里插入图片描述

可见,多级缓存的关键有两个:

  • 一个是在nginx中编写业务,实现nginx本地缓存、Redis、Tomcat的查询

  • 另一个就是在Tomcat中实现JVM进程缓存

其中Nginx编程则会用到OpenResty框架结合Lua这样的语言。

这也是今天课程的难点和重点。

2.JVM进程缓存

为了演示多级缓存的案例,我们先准备一个商品查询的业务。

2.1.导入案例

参考课前资料的:《案例导入说明.md》https://blog.csdn.net/aa35434/article/details/141106231

在这里插入图片描述

2.2.初识Caffeine

缓存在日常开发中启动至关重要的作用,由于是存储在内存中,数据的读取速度是非常快的,能大量减少对数据库的访问,减少数据库的压力。我们把缓存分为两类:

  • 分布式缓存,例如Redis:
    • 优点:存储容量更大、可靠性更好、可以在集群间共享
    • 缺点:访问缓存有网络开销
    • 场景:缓存数据量较大、可靠性要求较高、需要在集群间共享
  • 进程本地缓存,例如HashMap、GuavaCache:
    • 优点:读取本地内存,没有网络开销,速度更快
    • 缺点:存储容量有限、可靠性较低、无法共享
    • 场景:性能要求较高,缓存数据量较小

我们今天会利用Caffeine框架来实现JVM进程缓存。

Caffeine是一个基于Java8开发的,提供了近乎最佳命中率的高性能的本地缓存库。目前Spring内部的缓存使用的就是Caffeine。GitHub地址:https://github.com/ben-manes/caffeine

Caffeine的性能非常好,下图是官方给出的性能对比:

在这里插入图片描述

可以看到Caffeine的性能遥遥领先!

缓存使用的基本API:

@Test
void testBasicOps() {// 构建cache对象Cache<String, String> cache = Caffeine.newBuilder().build();// 存数据cache.put("gf", "迪丽热巴");// 取数据String gf = cache.getIfPresent("gf");System.out.println("gf = " + gf);// 取数据,包含两个参数:// 参数一:缓存的key// 参数二:Lambda表达式,表达式参数就是缓存的key,方法体是查询数据库的逻辑// 优先根据key查询JVM缓存,如果未命中,则执行参数二的Lambda表达式String defaultGF = cache.get("defaultGF", key -> {// 根据key去数据库查询数据return "柳岩";});System.out.println("defaultGF = " + defaultGF);
}

Caffeine既然是缓存的一种,肯定需要有缓存的清除策略,不然的话内存总会有耗尽的时候。

Caffeine提供了三种缓存驱逐策略:

  • 基于容量:设置缓存的数量上限

    // 创建缓存对象
    Cache<String, String> cache = Caffeine.newBuilder().maximumSize(1) // 设置缓存大小上限为 1.build();
    
  • 基于时间:设置缓存的有效时间

    // 创建缓存对象
    Cache<String, String> cache = Caffeine.newBuilder()// 设置缓存有效期为 10 秒,从最后一次写入开始计时 .expireAfterWrite(Duration.ofSeconds(10)) .build();
  • 基于引用:设置缓存为软引用或弱引用,利用GC来回收缓存数据。性能较差,不建议使用。

注意:在默认情况下,当一个缓存元素过期的时候,Caffeine不会自动立即将其清理和驱逐。而是在一次读或写操作后,或者在空闲时间完成对失效数据的驱逐。

2.3.实现JVM进程缓存

2.3.1.需求

利用Caffeine实现下列需求:

  • 给根据id查询商品的业务添加缓存,缓存未命中时查询数据库
  • 给根据id查询商品库存的业务添加缓存,缓存未命中时查询数据库
  • 缓存初始大小为100
  • 缓存上限为10000

2.3.2.实现

首先,我们需要定义两个Caffeine的缓存对象,分别保存商品、库存的缓存数据。

在item-service的com.heima.item.config包下定义CaffeineConfig类:

在这里插入图片描述

package com.heima.item.config;import com.github.benmanes.caffeine.cache.Cache;
import com.github.benmanes.caffeine.cache.Caffeine;
import com.heima.item.pojo.Item;
import com.heima.item.pojo.ItemStock;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;@Configuration
public class CaffeineConfig {//把商品存入到缓存中,一般把商品的id作为key@Beanpublic Cache<Long, Item> itemCache(){return Caffeine.newBuilder().initialCapacity(100) //缓存初始值.maximumSize(10_000) //缓存上限.build();}@Beanpublic Cache<Long, ItemStock> stockCache(){return Caffeine.newBuilder().initialCapacity(100).maximumSize(10_000).build();}
}

然后,修改item-service中的com.heima.item.web包下的ItemController类,添加缓存逻辑:

在这里插入图片描述

@RestController
@RequestMapping("item")
public class ItemController {@Autowiredprivate IItemService itemService;@Autowiredprivate IItemStockService stockService;@Autowiredprivate Cache<Long, Item> itemCache;@Autowiredprivate Cache<Long, ItemStock> stockCache;// ...其它略//根据id查询商品@GetMapping("/{id}")public Item findById(@PathVariable("id") Long id){//第一次执行先查询缓存,如果缓存中没有数据在查询数据库,之后会自动的把查询到的数据存入到缓存中,并返回结果给用户return itemCache.get(id, key -> itemService.query().ne("status", 3).eq("id", key).one());}//根据id查询库存@GetMapping("/stock/{id}")public ItemStock findStockById(@PathVariable("id") Long id){return stockCache.get(id, key -> stockService.getById(key));}}

2.3.3.启动项目测试

  • 查询商品:http://localhost:8081/item/10001
    在这里插入图片描述

  • 查看控制台,发现执行了一条sql语句
    在这里插入图片描述

  • 清空控制台日志,再次刷新执行上述查询商品地址:发现没有日志,说明本次查询走了缓存没有走数据库。
    在这里插入图片描述
    在这里插入图片描述

  • 同理:查询库存也是一样。

3.Lua语法入门

Nginx编程需要用到Lua语言,因此我们必须先入门Lua的基本语法。

3.1.初识Lua

Lua 是一种轻量小巧的脚本语言,用标准C语言编写并以源代码形式开放, 其设计目的是为了嵌入应用程序中,从而为应用程序提供灵活的扩展和定制功能。官网:https://www.lua.org/

在这里插入图片描述

Lua经常嵌入到C语言开发的程序中,例如游戏开发、游戏插件等。

Nginx本身也是C语言开发,因此也允许基于Lua做拓展。

3.1.HelloWorld

CentOS7默认已经安装了Lua语言环境,所以可以直接运行Lua代码。

1)在Linux虚拟机的任意目录下,新建一个hello.lua文件

在这里插入图片描述

2)添加下面的内容

print("Hello World!")  

3)运行

在这里插入图片描述

3.2.变量和循环

学习任何语言必然离不开变量,而变量的声明必须先知道数据的类型。

3.2.1.Lua的数据类型

Lua中支持的常见数据类型包括:

在这里插入图片描述

  • function:在lua中函数本身也是一个类型,所以可以声明为一个函数类型的变量,变量可以进行传递,这一点和java有很大的区别。
  • table:数组或者map,它同样是k-v结构,表示数组时k为数字,表示map时k为字符串类型。

另外,Lua提供了type()函数来判断一个变量的数据类型:

在这里插入图片描述

[root@cloud tmp]# lua -- 进入lua控制台可以直接编写lua命令,不用再创建hello.lua文件
Lua 5.1.4  Copyright (C) 1994-2008 Lua.org, PUC-Rio
> print("hello")
hello
> print(type("hello"))
string
> print(type(true))
boolean
> print(type(print)) -- print是个函数,所以它是函数类型
function
>

3.2.2.声明变量

Lua声明变量的时候无需指定数据类型,而是用local来声明变量为局部变量

-- 声明字符串,可以用单引号或双引号,
local str = 'hello'
-- 字符串拼接可以使用 ..
local str2 = 'hello' .. 'world'
-- 声明数字
local num = 21
-- 声明布尔类型
local flag = true

Lua中的table类型既可以作为数组,又可以作为Java中的map来使用。数组就是特殊的table,key是数组角标而已:

-- 声明数组 ,key为角标的 table
local arr = {'java', 'python', 'lua'}
-- 声明table,类似java的map
local map =  {name='Jack', age=21}

Lua中的数组角标是从1开始,访问的时候与Java中类似:

-- 访问数组,lua数组的角标从1开始
print(arr[1])

Lua中的table可以用key来访问:

-- 访问table
print(map['name'])  -- 方式一
print(map.name)    -- 方式二

Lua中的..可以用做字符串拼接:

[root@cloud tmp]# lua
Lua 5.1.4  Copyright (C) 1994-2008 Lua.org, PUC-Rio
> local str = "hello"
> local str1 = "hello" .. "world" print(str1)
helloworld
>

Lua中的局部变量一行结束就失效:

> local str = "hello" print(str) -- 局部变量,一行结束就失效,无法访问
hello
> print (str)
nil
> str1 = "hello1" -- 全局变量,一行结束,仍然可以访问
> print(str1)
hello1
>

3.2.3.循环

对于table,我们可以利用for循环来遍历。不过数组和普通table遍历略有差异。

遍历数组:

  • do:循环的开始
  • end:循环的结束
  • ipairs:解析数组
  • index,value:解析出来的键值对,名字随便写
-- 声明数组 key为索引的 table
local arr = {'java', 'python', 'lua'}
-- 遍历数组
for index,value in ipairs(arr) doprint(index, value) 
end

遍历普通table

  • 注意这里用的是pairs
-- 声明map,也就是table
local map = {name='Jack', age=21}
-- 遍历table
for key,value in pairs(map) doprint(key, value) 
end

代码比较复杂可以写在hello.lua文件中。

3.3.条件控制、函数

Lua中的条件控制和函数声明与Java类似。

3.3.1.函数

定义函数的语法:

-- 没有大括号
function 函数名( argument1, argument2..., argumentn)-- 函数体return 返回值
end

例如,定义一个函数,用来打印数组:

function printArr(arr)for index, value in ipairs(arr) doprint(value)end
endlocal arr = {100,200,300}printArr(arr) -- 调用函数

3.3.2.条件控制

类似Java的条件控制,例如if、else语法:

  • then:大括号开始
  • end:大括号结束
if(布尔表达式)
then--[ 布尔表达式为 true 时执行该语句块 --]
else--[ 布尔表达式为 false 时执行该语句块 --]
end

与java不同,布尔表达式中的逻辑运算是基于英文单词:

在这里插入图片描述

3.3.3.案例

需求:自定义一个函数,可以打印table,当参数为nil时,打印错误信息

function printArr(arr)if not arr thenprint('数组不能为空!')endfor index, value in ipairs(arr) doprint(value)end
end

4.实现多级缓存

多级缓存的实现离不开Nginx编程,而Nginx编程又离不开OpenResty。

4.1.安装OpenResty

OpenResty® 是一个基于 Nginx的高性能 Web 平台,用于方便地搭建能够处理超高并发、扩展性极高的动态 Web 应用、Web 服务和动态网关。具备下列特点:

  • 具备Nginx的完整功能
  • 基于Lua语言进行扩展,集成了大量精良的 Lua 库、第三方模块
  • 允许使用Lua自定义业务逻辑自定义库

官方网站: https://openresty.org/cn/

在这里插入图片描述

安装Lua可以参考课前资料提供的《安装OpenResty.md》:https://blog.csdn.net/aa35434/article/details/141283752

在这里插入图片描述

4.2.OpenResty快速入门

我们希望达到的多级缓存架构如图:

在这里插入图片描述

其中:

  • windows上的nginx用来做反向代理服务,将前端的查询商品的ajax请求代理到OpenResty集群

  • OpenResty集群用来编写多级缓存业务

4.2.1.反向代理流程

现在,商品详情页使用的是假的商品数据。不过在浏览器中,可以看到页面有发起ajax请求查询真实商品数据。

这个请求如下:

在这里插入图片描述

请求地址是localhost,端口是80,就被windows上安装的Nginx服务给接收到了。然后代理给了OpenResty集群:

在这里插入图片描述

我们需要在OpenResty中编写业务,查询商品数据并返回到浏览器。

但是这次,我们先在OpenResty接收请求,返回假的商品数据。

4.2.2.OpenResty监听请求

OpenResty的很多功能都依赖于其目录下的Lua库,需要在nginx.conf中指定依赖库的目录,并导入依赖:

1)添加对OpenResty的Lua模块的加载

修改/usr/local/openresty/nginx/conf/nginx.conf文件,在其中的http下面,添加下面代码:

在这里插入图片描述

#lua 模块
lua_package_path "/usr/local/openresty/lualib/?.lua;;";
#c模块     
lua_package_cpath "/usr/local/openresty/lualib/?.so;;";  

2)监听/api/item路径

修改/usr/local/openresty/nginx/conf/nginx.conf文件,在nginx.conf的server下面,添加对/api/item这个路径的监听:

location  /api/item {# 默认的响应类型default_type application/json;# 响应结果由lua/item.lua文件来决定content_by_lua_file lua/item.lua;
}

这个监听,就类似于SpringMVC中的@GetMapping("/api/item")做路径映射。

content_by_lua_file lua/item.lua则相当于调用item.lua这个文件,执行其中的业务,把结果返回给用户。相当于java中调用service。

4.2.3.编写item.lua

1)在/usr/local/openresty/nginx目录创建文件夹:lua

在这里插入图片描述

2)在/usr/loca/openresty/nginx/lua文件夹下,新建文件:item.lua

在这里插入图片描述

3)编写item.lua,返回假数据

item.lua中,利用ngx.say()函数返回数据到Response中

ngx.say('{"id":10001,"name":"SALSA AIR","title":"RIMOWA 21寸托运箱拉杆箱 SALSA AIR系列果绿色 820.70.36.4","price":17900,"image":"https://m.360buyimg.com/mobilecms/s720x720_jfs/t6934/364/1195375010/84676/e9f2c55f/597ece38N0ddcbc77.jpg!q70.jpg.webp","category":"拉杆箱","brand":"RIMOWA","spec":"","status":1,"createTime":"2019-04-30T16:00:00.000+00:00","updateTime":"2019-04-30T16:00:00.000+00:00","stock":2999,"sold":31290}')

4)重新加载配置

nginx -s reload

刷新商品页面:http://localhost/item.html?id=1001,即可看到效果:

在这里插入图片描述

4.3.请求参数处理

上一节中,我们在OpenResty接收前端请求,但是返回的是假数据。

要返回真实数据,必须根据前端传递来的商品id,查询商品信息才可以。

那么如何获取前端传递的商品参数呢?

4.3.1.获取参数的API

OpenResty中提供了一些API用来获取不同类型的前端请求参数:

路径占位符:~代表使用正则表达式。

在这里插入图片描述

4.3.2.获取参数并返回

需求:在OpenResty中接收这个请求,并获取路径中的id信息,拼接到结果的json字符串中返回

在前端发起的ajax请求如图:

在这里插入图片描述

可以看到商品id是以路径占位符方式传递的,因此可以利用正则表达式匹配的方式来获取ID

1)获取商品id

修改/usr/loca/openresty/nginx/nginx.conf文件中监听/api/item的代码,利用正则表达式获取ID:

location ~ /api/item/(\d+) {# 默认的响应类型default_type application/json;# 响应结果由lua/item.lua文件来决定content_by_lua_file lua/item.lua;
}

2)拼接ID并返回

修改/usr/loca/openresty/nginx/lua/item.lua文件,获取id并拼接到结果中返回:

-- 获取商品id
local id = ngx.var[1]
-- 拼接并返回
ngx.say('{"id":' .. id .. ',"name":"SALSA AIR","title":"RIMOWA 21寸托运箱拉杆箱 SALSA AIR系列果绿色 820.70.36.4","price":17900,"image":"https://m.360buyimg.com/mobilecms/s720x720_jfs/t6934/364/1195375010/84676/e9f2c55f/597ece38N0ddcbc77.jpg!q70.jpg.webp","category":"拉杆箱","brand":"RIMOWA","spec":"","status":1,"createTime":"2019-04-30T16:00:00.000+00:00","updateTime":"2019-04-30T16:00:00.000+00:00","stock":2999,"sold":31290}')

3)重新加载并测试

运行命令以重新加载OpenResty配置:

nginx -s reload

刷新页面可以看到结果中已经带上了ID:

在这里插入图片描述

4.4.查询Tomcat

拿到商品ID后,本应去缓存中查询商品信息,不过目前我们还未建立nginx、redis缓存。因此,这里我们先根据商品id去tomcat查询商品信息。我们实现如图部分:

在这里插入图片描述

需要注意的是,我们的OpenResty是在虚拟机,Tomcat是在Windows电脑上。两者IP一定不要搞错了。

结论:虚拟机地址的前3位+最后一位替换成1,这就是Windows电脑地址(前提是关闭了防火墙)。
在这里插入图片描述

  • 案例需求
    在这里插入图片描述

4.4.1.发送http请求的API

nginx提供了内部API用以发送http请求:

-- /path:请求路径
local resp = ngx.location.capture("/path",{method = ngx.HTTP_GET,   -- 请求方式args = {a=1,b=2},  -- get方式传参数body = "c=3&d=4" -- post方式传参 (传参方式二选一)
})

返回的响应内容包括:

  • resp.status:响应状态码
  • resp.header:响应头,是一个table
  • resp.body:响应体,就是响应数据

注意:这里的path是路径,并不包含IP和端口。这个请求会被nginx内部的server监听并处理。

但是我们希望这个请求发送到Tomcat服务器,所以还需要编写一个server来对这个路径做反向代理:

 location /path {# 这里是windows电脑的ip和Java服务端口,需要确保windows防火墙处于关闭状态proxy_pass http://192.168.150.1:8081; }

原理如图:

在这里插入图片描述

4.4.2.封装http工具

下面,我们封装一个发送Http请求的工具,基于ngx.location.capture来实现查询tomcat。

1)添加反向代理,到windows的Java服务

因为item-service中的接口都是/item开头,所以我们监听/item路径,代理到windows上的tomcat服务。

修改 /usr/local/openresty/nginx/conf/nginx.conf文件,添加一个location:

location /item {proxy_pass http://192.168.10.1:8081;
}

以后,只要我们调用ngx.location.capture("/item"),就一定能发送请求到windows的tomcat服务。

2)封装工具类

这个ngx.location.capture("/item")方法我们经常使用,所以可以封装为一个函数,比如现在查商品一次、查库存一次。

之前我们说过,OpenResty启动时会加载以下两个目录中的工具文件:

在这里插入图片描述

所以,自定义的http工具也需要放到这个目录下。

/usr/local/openresty/lualib目录下,新建一个common.lua文件:

vi /usr/local/openresty/lualib/common.lua

内容如下:

-- 封装函数,发送http请求,并解析响应
local function read_http(path, params)-- 查询成功local resp = ngx.location.capture(path,{method = ngx.HTTP_GET,args = params,})-- 查询失败返回nil相当于false,false取反就位trueif not resp then-- 记录错误信息,返回404ngx.log(ngx.ERR, "http请求查询失败, path: ", path , ", args: ", args)ngx.exit(404)endreturn resp.body  -- 成功返回响应体,之前规定的是json类型1
end
-- 将方法导出
local _M = {  read_http = read_http
}  
return _M

这个工具将read_http函数封装到_M这个table类型的变量中,并且返回,这类似于导出。

使用的时候,可以利用require('common')来导入该函数库,这里的common是函数库的文件名。

在lualib目录下可以直接写文件名,如果在lualib目录下的子目录中还要写子目录。

3)实现商品查询

最后,我们修改/usr/local/openresty/nginx/lua/item.lua文件,利用刚刚封装的函数库实现对tomcat的查询:

-- 引入自定义common工具模块,返回值是common中返回的 _M,是个table数组类型的变量
local common = require("common")
-- 从 common中获取read_http这个函数,获取数组中的值
local read_http = common.read_http
-- 获取路径参数
local id = ngx.var[1]
-- 根据id查询商品,返回值为json类型
-- 这个参数是以路径方式拼接的,?后面没有参数所以传递的参数值为nil。
local itemJSON = read_http("/item/".. id, nil)
-- 根据id查询商品库存,返回值为json类型
local itemStockJSON = read_http("/item/stock/".. id, nil)-- 返回结果:先不组合只返回itemJSON 商品数据查看效果
ngx.say(itemJSON )

测试:发现商品中缺少库存数据。

在这里插入图片描述

这里查询到的结果是json字符串,并且包含商品、库存两个json字符串,页面最终需要的是把两个json拼接为一个json:

在这里插入图片描述

json类型无法拼接,这就需要我们先把JSON变为lua的table,完成数据整合后,再转为JSON。

4.4.3.CJSON工具类

OpenResty提供了一个cjson的模块用来处理JSON的序列化和反序列化。

官方地址: https://github.com/openresty/lua-cjson/

1)引入cjson模块:

local cjson = require "cjson"

2)序列化:

local obj = {name = 'jack',age = 21
}
-- 把 table 序列化为 json
local json = cjson.encode(obj)

3)反序列化:

local json = '{"name": "jack", "age": 21}'
-- 反序列化 json为 table
local obj = cjson.decode(json);
print(obj.name)

4.4.4.实现Tomcat查询

下面,我们修改之前的item.lua中的业务,添加json处理功能:

-- 导入common函数库
local common = require('common')
local read_http = common.read_http
-- 导入cjson库
local cjson = require('cjson')-- 获取路径参数
local id = ngx.var[1]
-- 根据id查询商品
local itemJSON = read_http("/item/".. id, nil)
-- 根据id查询商品库存
local itemStockJSON = read_http("/item/stock/".. id, nil)-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(itemStockJSON )-- 组合数据:把库存中的数据放入到商品中,商品数据中缺乏stock  sold 
item.stock = stock.stock
item.sold = stock.sold-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))

测试:库存数据已包含

在这里插入图片描述

4.4.5.基于ID负载均衡

刚才的代码中,我们的tomcat是单机部署。而实际开发中,tomcat一定是集群模式:

在这里插入图片描述

因此,OpenResty需要对tomcat集群做负载均衡。

而默认的负载均衡规则是轮询模式,当我们查询/item/10001时:

  • 第一次会访问8081端口的tomcat服务,在该服务内部就形成了JVM进程缓存
  • 第二次会访问8082端口的tomcat服务,该服务内部没有JVM缓存(因为JVM缓存无法共享),会查询数据库

你看,因为轮询的原因,第一次查询8081形成的JVM缓存并未生效,直到下一次再次访问到8081时才可以生效,缓存命中率太低了。

怎么办?

如果能让同一个商品,每次查询时都访问同一个tomcat服务,那么JVM缓存就一定能生效了。

也就是说,我们需要根据商品id做负载均衡,而不是轮询。

1)原理

nginx提供了基于请求路径做负载均衡的算法:

nginx根据请求路径做hash运算,把得到的数值对tomcat服务的数量取余,余数是几,就访问第几个服务,实现负载均衡。

例如:

  • 我们的请求路径是 /item/10001
  • tomcat总数为2台(8081、8082)
  • 对请求路径/item/1001做hash运算求余的结果为1
  • 则访问第一个tomcat服务,也就是8081

只要id不变,每次hash运算结果也不会变,那就可以保证同一个商品,一直访问同一个tomcat服务,确保JVM缓存生效。

2)实现

修改/usr/local/openresty/nginx/conf/nginx.conf文件,实现基于ID做负载均衡。

首先,定义tomcat集群,并设置基于路径做负载均衡:

upstream tomcat-cluster {hash $request_uri;server 192.168.150.1:8081;server 192.168.150.1:8082;
}

然后,修改对tomcat服务的反向代理,目标指向tomcat集群:

location /item {proxy_pass http://tomcat-cluster;
}

重新加载OpenResty

nginx -s reload
3)测试

启动两台tomcat服务:

在这里插入图片描述

同时启动:

在这里插入图片描述

清空日志后,再次访问页面,可以看到不同id的商品,访问到了不同的tomcat服务:

在这里插入图片描述

在这里插入图片描述

4.5.Redis缓存预热

Redis缓存会面临冷启动问题:

冷启动:服务刚刚启动时,Redis中并没有缓存,如果所有商品数据都在第一次查询时添加缓存,可能会给数据库带来较大压力。

缓存预热:在实际开发中,我们可以利用大数据统计用户访问的热点数据,在项目启动时将这些热点数据提前查询并保存到Redis中。

我们数据量较少,并且没有数据统计相关功能,目前可以在启动时将所有数据都放入缓存中。

1)利用Docker安装Redis

docker run --name redis -p 6379:6379 -d redis redis-server --appendonly yes

2)在item-service服务中引入Redis依赖

<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

3)配置Redis地址

spring:redis:host: 192.168.150.101 #port默认就是6379

4)编写初始化类

缓存预热需要在项目启动时完成,并且必须是拿到RedisTemplate之后。

这里我们利用InitializingBean接口来实现,因为InitializingBean可以在对象被Spring创建并且成员变量全部注入后执行。

package com.heima.item.config;import com.fasterxml.jackson.databind.ObjectMapper;
import com.heima.item.pojo.Item;
import com.heima.item.pojo.ItemStock;
import com.heima.item.service.IItemService;
import com.heima.item.service.IItemStockService;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Component;import java.util.List;@Component
public class RedisHandler implements InitializingBean {@Autowiredprivate StringRedisTemplate redisTemplate;@Autowiredprivate IItemService itemService;@Autowiredprivate IItemStockService stockService;private static final ObjectMapper MAPPER = new ObjectMapper();//spring提供的序列化工具类@Overridepublic void afterPropertiesSet() throws Exception {//凡是实现InitializingBean接口就一定要实现afterPropertiesSet方法// 初始化缓存// 1.查询商品信息List<Item> itemList = itemService.list();// 2.放入缓存for (Item item : itemList) {// 2.1.item序列化为JSON:因为存入redis中的是json格式String json = MAPPER.writeValueAsString(item);// 2.2.存入redis:把商品存入到缓存中可以让id为key,商品和库存的id是一样的在redis中会造成冲突,所以加个前缀。redisTemplate.opsForValue().set("item:id:" + item.getId(), json);}// 3.查询商品库存信息List<ItemStock> stockList = stockService.list();// 4.放入缓存for (ItemStock stock : stockList) {// 2.1.item序列化为JSONString json = MAPPER.writeValueAsString(stock);// 2.2.存入redisredisTemplate.opsForValue().set("item:stock:id:" + stock.getId(), json);}}
}
  • 启动项目:发现控制台执行了查询数据库的sql。
    在这里插入图片描述
  • 查看redis:商品和库存已经写入到redis中。
    在这里插入图片描述

4.6.查询Redis缓存

现在,Redis缓存已经准备就绪,我们可以再OpenResty中实现查询Redis的逻辑了。如下图红框所示:

在这里插入图片描述

当请求进入OpenResty之后:

  • 优先查询Redis缓存
  • 如果Redis缓存未命中,再查询Tomcat

4.6.1.封装Redis工具

OpenResty提供了操作Redis的模块,我们只要引入该模块就能直接使用。但是为了方便,我们将Redis操作封装到之前的common.lua工具库中。

修改/usr/local/openresty/lualib/common.lua文件:

1)引入Redis模块,并初始化Redis对象

-- 导入redis
-- 该文件没有直接在lualib目录下,有子目录所以还要加上目录resty
local redis = require('resty.redis')
-- 初始化redis:lua里面创建对象的语法
local red = redis:new()
-- 设置redis超时时间:单位/毫秒,建立连接的超时时间,发送请求的超时时间,响应结果的超时时间
red:set_timeouts(1000, 1000, 1000)

2)封装函数,用来释放Redis连接,其实是放入连接池

-- 关闭redis连接的工具方法,其实是放入连接池
local function close_redis(red)-- 连接的空闲时间,单位是毫秒,也就是说10秒种没连接没用,会真正的关闭local pool_max_idle_time = 10000 local pool_size = 100 --连接池大小-- 设置保持连接,即把redis放到连接池中。-- 有2个返回值,err:相当于java中的异常消息,ok:是结果 如果成功返回ok如果失败返回nil,相当于false。local ok, err = red:set_keepalive(pool_max_idle_time, pool_size)-- 如果为nil取反为true进入到if中,输出一个错误日志。if not ok thenngx.log(ngx.ERR, "放入redis连接池失败: ", err)end
end

3)封装函数,根据key查询Redis数据

-- 查询redis的方法 ip和port是redis地址,key是查询的key
local function read_redis(ip, port, key)-- 获取一个连接local ok, err = red:connect(ip, port)if not ok thenngx.log(ngx.ERR, "连接redis失败 : ", err)return nilend-- 查询redis:只能读取k:v,String类型的数据,map类型的这里没有封装。local resp, err = red:get(key)-- 查询失败处理if not resp thenngx.log(ngx.ERR, "查询Redis失败: ", err, ", key = " , key)end--得到的数据为空处理if resp == ngx.null thenresp = nilngx.log(ngx.ERR, "查询Redis数据为空, key = ", key)end-- 查询成功,释放连接,其实是放到连接池中close_redis(red)-- 返回结果return respend

4)导出

-- 将方法导出
local _M = {  read_http = read_http,read_redis = read_redis
}  
return _M

完整的common.lua:

-- 导入redis
local redis = require('resty.redis')
-- 初始化redis
local red = redis:new()
red:set_timeouts(1000, 1000, 1000)-- 关闭redis连接的工具方法,其实是放入连接池
local function close_redis(red)local pool_max_idle_time = 10000 -- 连接的空闲时间,单位是毫秒local pool_size = 100 --连接池大小local ok, err = red:set_keepalive(pool_max_idle_time, pool_size)if not ok thenngx.log(ngx.ERR, "放入redis连接池失败: ", err)end
end-- 查询redis的方法 ip和port是redis地址,key是查询的key
local function read_redis(ip, port, key)-- 获取一个连接local ok, err = red:connect(ip, port)if not ok thenngx.log(ngx.ERR, "连接redis失败 : ", err)return nilend-- 查询redislocal resp, err = red:get(key)-- 查询失败处理if not resp thenngx.log(ngx.ERR, "查询Redis失败: ", err, ", key = " , key)end--得到的数据为空处理if resp == ngx.null thenresp = nilngx.log(ngx.ERR, "查询Redis数据为空, key = ", key)endclose_redis(red)return resp
end-- 封装函数,发送http请求,并解析响应
local function read_http(path, params)local resp = ngx.location.capture(path,{method = ngx.HTTP_GET,args = params,})if not resp then-- 记录错误信息,返回404ngx.log(ngx.ERR, "http查询失败, path: ", path , ", args: ", args)ngx.exit(404)endreturn resp.body
end
-- 将方法导出
local _M = {  read_http = read_http,read_redis = read_redis
}  
return _M

4.6.2.实现Redis查询

接下来,我们就可以去修改item.lua文件,实现对Redis的查询了。

查询逻辑是:

  • 根据id查询Redis
  • 如果查询失败则继续查询Tomcat
  • 将查询结果返回

1)修改/usr/local/openresty/nginx/lua/item.lua文件,添加一个查询函数:

-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 商品和库存都要改,所以可以封装成一个查询函数
function read_data(key, path, params)-- 查询本地缓存local val = read_redis("127.0.0.1", 6379, key)-- 判断查询结果if not val thenngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)-- redis查询失败,去查询httpval = read_http(path, params)end-- 返回数据return val
end

2)而后修改商品查询、库存查询的业务:

在这里插入图片描述

3)完整的item.lua代码:

-- 引入自定义common工具模块,返回值是common中返回的 _M
local common = require("common")-- 从 common中获取read_http这个函数
local read_http = common.read_http
local read_redis = common.read_redis-- 导入cjson库
local cjson = require('cjson')-- 封装查询函数
function read_data(key, path, params)-- 查询redis缓存:因为这个代码是在OpenResty运行的,OpenResty和redis都在虚拟机中,所以可以用127.0.0.1代表本地local val = read_redis("127.0.0.1", 6379, key)-- 判断查询结果if not val thenngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)-- redis查询失败,去查询httpval = read_http(path, params)end-- 返回数据return val
end-- 获取商品id
local id = ngx.var[1]-- 根据id查询商品
local itemJSON = read_data("item:id:" .. id,  "/item/" .. id, nil)-- 根据id查询商品库存
local itemStockJSON = read_data("item:stock:id:" .. id, "/item/stock/" .. id, nil)-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(itemStockJSON)-- 组合数据:把库存中的数据放入到商品中,商品数据中缺乏stock  sold 
item.stock = stock.stock
item.sold = stock.sold-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))

测试:

  • 停止掉tomact服务,发现仍然可以查询成功,说明走了redis缓存。
    在这里插入图片描述

4.7.Nginx本地缓存

现在,整个多级缓存中只差最后一环,也就是nginx的本地缓存了。如图:

在这里插入图片描述

4.7.1.本地缓存API

OpenResty为Nginx提供了shard dict共享字典的功能,可以在nginx的多个worker工作进程之间共享数据,实现缓存功能。

注意:这里只是在nginx内部共享,如果部署了多台OpenResty,它们之间是无法共享的。

1)开启共享字典,在nginx.conf的http下添加配置:

 # 共享字典,也就是本地缓存,名称叫做:item_cache,大小150m兆lua_shared_dict item_cache 150m; 

2)操作共享字典:

-- 获取本地缓存对象
local item_cache = ngx.shared.item_cache
-- 存储, 指定key、value、过期时间,单位s,默认为0代表永不过期
item_cache:set('key', 'value', 1000)
-- 读取
local val = item_cache:get('key')
  • 需求分析:
    在这里插入图片描述
    商品基本信息长时间不发生变化,可以设置有效期时间长的,对于一些敏感信息比如库存变化的频率比较快,有效期可以设置短一些。对于特别敏感的数据比如秒杀业务,就不要在往nginx中存,因为nginx本地缓存的更新策略是到期更新,万一到期之前就发生了变化。

4.7.2.实现本地缓存查询

1)修改/usr/local/openresty/lua/item.lua文件,修改read_data查询函数,添加本地缓存逻辑:

-- 导入共享词典,本地缓存
local item_cache = ngx.shared.item_cache-- 封装查询函数
function read_data(key, expire, path, params)-- 查询本地缓存local val = item_cache:get(key)if not val thenngx.log(ngx.ERR, "本地缓存查询失败,尝试查询Redis, key: ", key)-- 查询redisval = read_redis("127.0.0.1", 6379, key)-- 判断查询结果if not val thenngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)-- redis查询失败,去查询httpval = read_http(path, params)endend-- 查询成功,把数据写入本地缓存  expire:不同的数据有不同的有效期,所以动态的传递item_cache:set(key, val, expire)-- 返回数据return val
end

2)修改item.lua中查询商品和库存的业务,实现最新的read_data函数:

在这里插入图片描述

其实就是多了缓存时间参数,过期后nginx缓存会自动删除,下次访问即可更新缓存。

这里给商品基本信息设置超时时间为30分钟,库存为1分钟。

因为库存更新频率较高,如果缓存时间过长,可能与数据库差异较大。

3)完整的item.lua文件:

-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 导入cjson库
local cjson = require('cjson')
-- 导入共享词典,本地缓存
local item_cache = ngx.shared.item_cache-- 封装查询函数
function read_data(key, expire, path, params)-- 查询本地缓存local val = item_cache:get(key)if not val thenngx.log(ngx.ERR, "本地缓存查询失败,尝试查询Redis, key: ", key)-- 查询redisval = read_redis("127.0.0.1", 6379, key)-- 判断查询结果if not val thenngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)-- redis查询失败,去查询httpval = read_http(path, params)endend-- 查询成功,把数据写入本地缓存item_cache:set(key, val, expire)-- 返回数据return val
end-- 获取路径参数
local id = ngx.var[1]-- 查询商品信息
local itemJSON = read_data("item:id:" .. id, 1800,  "/item/" .. id, nil)
-- 查询库存信息
local stockJSON = read_data("item:stock:id:" .. id, 60, "/item/stock/" .. id, nil)-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)
-- 组合数据
item.stock = stock.stock
item.sold = stock.sold-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))

测试nginx本地缓存生效:

  • 刷新页面查看日志,第一次没有本地缓存,所以本地缓存查询失败
    在这里插入图片描述
  • 查看报错日志
    在这里插入图片描述
    在这里插入图片描述
  • 多次刷新浏览器,本地缓存报错日志没有增加,说明查询的是本地缓存。(因为item.lua的业务逻辑就是查询到本地缓存直接返回数据,没有查询到才会报错误日志接着查询redis。)
    在这里插入图片描述

5.缓存同步

大多数情况下,浏览器查询到的都是缓存数据,如果缓存数据与数据库数据存在较大差异,可能会产生比较严重的后果。

所以我们必须保证数据库数据、缓存数据的一致性,这就是缓存与数据库的同步。

5.1.数据同步策略

缓存数据同步的常见方式有三种:

设置有效期:给缓存设置有效期,到期后自动删除。再次查询时更新

  • 优势:简单、方便
  • 缺点:时效性差,缓存过期之前可能不一致
  • 场景:更新频率较低,时效性要求低的业务

同步双写:在修改数据库的同时,直接修改缓存

  • 优势:时效性强,缓存与数据库强一致
  • 缺点:有代码侵入,耦合度高;
  • 场景:对一致性、时效性要求较高的缓存数据

异步通知:修改数据库时发送事件通知,相关服务监听到通知后修改缓存数据

  • 优势:低耦合,可以同时通知多个缓存服务
  • 缺点:时效性一般,可能存在中间不一致状态
  • 场景:时效性要求一般,有多个服务需要同步

而异步实现又可以基于MQ或者Canal来实现:

1)基于MQ的异步通知:

在这里插入图片描述

解读:

  • 商品服务完成对数据的修改后,只需要发送一条消息到MQ中。
  • 缓存服务监听MQ消息,然后完成对缓存的更新

依然有少量的代码侵入。

2)基于Canal的通知

在这里插入图片描述

解读:

  • 商品服务完成商品修改后,业务直接结束,没有任何代码侵入
  • Canal监听MySQL变化,当发现变化后,立即通知缓存服务
  • 缓存服务接收到canal通知,更新缓存

代码零侵入

5.2.安装Canal

5.2.1.认识Canal

Canal [kə’næl],译意为水道/管道/沟渠,canal是阿里巴巴旗下的一款开源项目,基于Java开发。基于数据库增量日志解析,提供增量数据订阅&消费。GitHub的地址:https://github.com/alibaba/canal

Canal是基于mysql的主从同步来实现的,MySQL主从同步的原理如下:

在这里插入图片描述

  • 1)MySQL master 将数据变更写入二进制日志( binary log),其中记录的数据叫做binary log events
  • 2)MySQL slave 将 master 的 binary log events拷贝到它的中继日志(relay log)
  • 3)MySQL slave 重放 relay log 中事件,将数据变更反映它自己的数据

而Canal就是把自己伪装成MySQL的一个slave节点,从而监听master的binary log变化。再把得到的变化信息通知给Canal的客户端,进而完成对其它数据库的同步。

所以想要使用Canal需要先实现mysql的主从同步。
在这里插入图片描述

5.2.2.安装Canal

安装和配置Canal参考课前资料文档:https://blog.csdn.net/aa35434/article/details/141609524

在这里插入图片描述

5.3.监听Canal

Canal提供了各种语言的客户端,当Canal监听到binlog变化时,会通知Canal的客户端。

在这里插入图片描述

我们可以利用Canal提供的Java客户端,监听Canal通知消息。当收到变化的消息时,完成对缓存的更新。

不过这里我们会使用GitHub上的第三方开源的canal-starter客户端。地址:https://github.com/NormanGyllenhaal/canal-client

与SpringBoot完美整合,自动装配,比官方客户端要简单好用很多。

5.3.1.引入依赖:

<dependency><groupId>top.javatool</groupId><artifactId>canal-spring-boot-starter</artifactId><version>1.2.1-RELEASE</version>
</dependency>

5.3.2.编写配置:

canal:destination: heima # canal的集群名字,要与安装canal时设置的名称一致server: 192.168.10.161:11111 # canal服务地址

5.3.3.修改Item实体类

通过@Id、@Column、等注解完成Item与数据库表字段的映射:
在这里插入图片描述

package com.heima.item.pojo;import com.baomidou.mybatisplus.annotation.IdType;
import com.baomidou.mybatisplus.annotation.TableField;
import com.baomidou.mybatisplus.annotation.TableId;
import com.baomidou.mybatisplus.annotation.TableName;
import lombok.Data;
import org.springframework.data.annotation.Id;
import org.springframework.data.annotation.Transient;import javax.persistence.Column;
import java.util.Date;@Data
@TableName("tb_item")
public class Item {@TableId(type = IdType.AUTO)@Idprivate Long id;//商品id@Column(name = "name")private String name;//商品名称private String title;//商品标题private Long price;//价格(分)private String image;//商品图片private String category;//分类名称private String brand;//品牌名称private String spec;//规格private Integer status;//商品状态 1-正常,2-下架private Date createTime;//创建时间private Date updateTime;//更新时间@TableField(exist = false)@Transientprivate Integer stock;@TableField(exist = false)@Transientprivate Integer sold;
}

5.3.4.编写监听器

通过实现EntryHandler<T>接口编写监听器,监听Canal消息。注意两点:
在这里插入图片描述

  • 实现类通过@CanalTable("tb_item")指定监听的表信息
  • EntryHandler的泛型是与表对应的实体类

在这里插入图片描述

package com.heima.item.canal;import com.github.benmanes.caffeine.cache.Cache;
import com.heima.item.config.RedisHandler;
import com.heima.item.pojo.Item;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
import top.javatool.canal.client.annotation.CanalTable;
import top.javatool.canal.client.handler.EntryHandler;@CanalTable("tb_item")
@Component
public class ItemHandler implements EntryHandler<Item> {@Autowiredprivate RedisHandler redisHandler;@Autowiredprivate Cache<Long, Item> itemCache;@Overridepublic void insert(Item item) {// 写数据到JVM进程缓存itemCache.put(item.getId(), item);// 写数据到redisredisHandler.saveItem(item);}@Overridepublic void update(Item before, Item after) {// 写数据到JVM进程缓存itemCache.put(after.getId(), after);// 写数据到redisredisHandler.saveItem(after);}@Overridepublic void delete(Item item) {// 删除数据到JVM进程缓存itemCache.invalidate(item.getId());// 删除数据到redisredisHandler.deleteItemById(item.getId());}
}

在这里对Redis的操作都封装到了RedisHandler这个对象中,是我们之前做缓存预热时编写的一个类,内容如下:

在这里插入图片描述

package com.heima.item.config;import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.heima.item.pojo.Item;
import com.heima.item.pojo.ItemStock;
import com.heima.item.service.IItemService;
import com.heima.item.service.IItemStockService;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Component;import java.util.List;@Component
public class RedisHandler implements InitializingBean {@Autowiredprivate StringRedisTemplate redisTemplate;@Autowiredprivate IItemService itemService;@Autowiredprivate IItemStockService stockService;private static final ObjectMapper MAPPER = new ObjectMapper();@Overridepublic void afterPropertiesSet() throws Exception {// 初始化缓存// 1.查询商品信息List<Item> itemList = itemService.list();// 2.放入缓存for (Item item : itemList) {// 2.1.item序列化为JSONString json = MAPPER.writeValueAsString(item);// 2.2.存入redisredisTemplate.opsForValue().set("item:id:" + item.getId(), json);}// 3.查询商品库存信息List<ItemStock> stockList = stockService.list();// 4.放入缓存for (ItemStock stock : stockList) {// 2.1.item序列化为JSONString json = MAPPER.writeValueAsString(stock);// 2.2.存入redisredisTemplate.opsForValue().set("item:stock:id:" + stock.getId(), json);}}public void saveItem(Item item) {try {String json = MAPPER.writeValueAsString(item);redisTemplate.opsForValue().set("item:id:" + item.getId(), json);} catch (JsonProcessingException e) {throw new RuntimeException(e);}}public void deleteItemById(Long id) {redisTemplate.delete("item:id:" + id);}
}

测试

  • 重启服务,出现以下日志说明java代码和Canal建立了连接。
    在这里插入图片描述

  • 我们只是修改了redis和jvm进程缓存而nginx本地缓存没有修改,所以在浏览器上测试不太能看到,因为先查询的是nginx本地缓存。

  • 查看10001数据:http://localhost:8081/item/10001
    在这里插入图片描述

  • 在页面上对10001数据进行修改
    在这里插入图片描述
    在这里插入图片描述

  • 再次访问:http://localhost:8081/item/10001,数据发生了变化,说明缓存进行了同步
    在这里插入图片描述

  • 打开redis:同样发生了变化。
    在这里插入图片描述

6.总结

  • 除了OpenResty向tomact做负载均衡外,nginx到OpenResty也要做负载均衡(我们没做)。

  • OpenResty我们只部署了一台,如果部署成多台OpenResty,本地缓存同样不共享,我们在nginx做反向代理到OpenResty的时候也要做对商品的id做路由,同一个id永远只访问同一个OpenResty,这样本地缓存一直生效。

在这里插入图片描述

这篇关于黑马-Cloud21版-高级篇09:多级缓存的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129062

相关文章

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Redis与缓存解读

《Redis与缓存解读》文章介绍了Redis作为缓存层的优势和缺点,并分析了六种缓存更新策略,包括超时剔除、先删缓存再更新数据库、旁路缓存、先更新数据库再删缓存、先更新数据库再更新缓存、读写穿透和异步... 目录缓存缓存优缺点缓存更新策略超时剔除先删缓存再更新数据库旁路缓存(先更新数据库,再删缓存)先更新数

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

使用Spring Cache时设置缓存键的注意事项详解

《使用SpringCache时设置缓存键的注意事项详解》在现代的Web应用中,缓存是提高系统性能和响应速度的重要手段之一,Spring框架提供了强大的缓存支持,通过​​@Cacheable​​、​​... 目录引言1. 缓存键的基本概念2. 默认缓存键生成器3. 自定义缓存键3.1 使用​​@Cacheab

Python中列表的高级索引技巧分享

《Python中列表的高级索引技巧分享》列表是Python中最常用的数据结构之一,它允许你存储多个元素,并且可以通过索引来访问这些元素,本文将带你深入了解Python列表的高级索引技巧,希望对... 目录1.基本索引2.切片3.负数索引切片4.步长5.多维列表6.列表解析7.切片赋值8.删除元素9.反转列表

java poi实现Excel多级表头导出方式(多级表头,复杂表头)

《javapoi实现Excel多级表头导出方式(多级表头,复杂表头)》文章介绍了使用javapoi库实现Excel多级表头导出的方法,通过主代码、合并单元格、设置表头单元格宽度、填充数据、web下载... 目录Java poi实现Excel多级表头导出(多级表头,复杂表头)上代码1.主代码2.合并单元格3.

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Nacos客户端本地缓存和故障转移方式

《Nacos客户端本地缓存和故障转移方式》Nacos客户端在从Server获得服务时,若出现故障,会通过ServiceInfoHolder和FailoverReactor进行故障转移,ServiceI... 目录1. ServiceInfoHolder本地缓存目录2. FailoverReactorinit

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k