Pandas-数据操作-字符串型(一):常用方法【str(自动过滤NaN值)、索引】

2024-09-02 01:58

本文主要是介绍Pandas-数据操作-字符串型(一):常用方法【str(自动过滤NaN值)、索引】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pandas针对字符串配备的一套方法,使其易于对数组的每个元素进行操作。

一、str:通过str访问,且自动排除丢失/ NA值

通过str访问,且自动排除丢失/ NA值

  • 直接通过.str调用字符串方法
  • 可以对Series、Dataframe使用
  • 自动过滤NaN值
import numpy as np
import pandas as pd# 通过str访问,且自动排除丢失/ NA值
# 直接通过.str调用字符串方法
# 可以对Series、Dataframe使用
# 自动过滤NaN值s = pd.Series(['A', 'b', 'C', 'bbhello', '123', np.nan, 'hj'])
df = pd.DataFrame({'key1': list('abcdef'),'key2': ['hee', 'fv', 'w', 'hija', '123', np.nan]})
print("s = \n", s)
print('-' * 50)
print("df = \n", df)
print('-' * 200)print("s.str.count('b') = \n", s.str.count('b'))
print('-' * 50)
print("df['key2'].str.upper() = \n", df['key2'].str.upper())
print('-' * 200)# df.columns是一个Index对象,也可使用.str
df.columns = df.columns.str.upper()
print("df = \n", df)
print('-' * 200)

打印结果:

s = 
0          A
1          b
2          C
3    bbhello
4        123
5        NaN
6         hj
dtype: object
--------------------------------------------------
df = key1  key2
0    a   hee
1    b    fv
2    c     w
3    d  hija
4    e   123
5    f   NaN
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
s.str.count('b') = 0    0.0
1    1.0
2    0.0
3    2.0
4    0.0
5    NaN
6    0.0
dtype: float64
--------------------------------------------------
df['key2'].str.upper() = 0     HEE
1      FV
2       W
3    HIJA
4     123
5     NaN
Name: key2, dtype: object
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
df = KEY1  KEY2
0    a   hee
1    b    fv
2    c     w
3    d  hija
4    e   123
5    f   NaN
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Process finished with exit code 0

二、字符串索引

import numpy as np
import pandas as pd# 字符串索引s = pd.Series(['A', 'b', 'C', 'bbhello', '123', np.nan, 'hj'])
df = pd.DataFrame({'key1': list('abcdef'),'key2': ['hee', 'fv', 'w', 'hija', '123', np.nan]})# 取第一个字符
data1 = s.str[0]
print("取第一个字符: data1 = s.str[0] = \n", data1)
print('-' * 200)
# 取前两个字符
data2 = s.str[:2]
print("取前两个字符: data2 = s.str[:2] = \n", data2)
print('-' * 200)# str之后和字符串本身索引方式相同
data3 = df['key2'].str[:2]
print("data3 = df['key2'].str[:2] = \n", data3)
print('-' * 200)

打印结果:

取第一个字符: data1 = s.str[0] = 0      A
1      b
2      C
3      b
4      1
5    NaN
6      h
dtype: object
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
取前两个字符: data2 = s.str[:2] = 0      A
1      b
2      C
3     bb
4     12
5    NaN
6     hj
dtype: object
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
data3 = df['key2'].str[:2] = 0     he
1     fv
2      w
3     hi
4     12
5    NaN
Name: key2, dtype: object
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Process finished with exit code 0

这篇关于Pandas-数据操作-字符串型(一):常用方法【str(自动过滤NaN值)、索引】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128672

相关文章

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

golang中reflect包的常用方法

《golang中reflect包的常用方法》Go反射reflect包提供类型和值方法,用于获取类型信息、访问字段、调用方法等,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录reflect包方法总结类型 (Type) 方法值 (Value) 方法reflect包方法总结

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

mysql表操作与查询功能详解

《mysql表操作与查询功能详解》本文系统讲解MySQL表操作与查询,涵盖创建、修改、复制表语法,基本查询结构及WHERE、GROUPBY等子句,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随... 目录01.表的操作1.1表操作概览1.2创建表1.3修改表1.4复制表02.基本查询操作2.1 SE

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re