<C++> 红黑树

2024-09-02 00:28
文章标签 c++ 红黑树

本文主要是介绍<C++> 红黑树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1. 红黑树的概念

2. 红黑树的性质

3. 红黑树节点的定义

4. 红黑树的插入操作

5. 红黑树的验证

6. 红黑树与AVL树的比较

7. 红黑树的删除

        红黑树比AVL树更优一些,因为AVL要求太严格,左右高度差不超过1,而红黑树采用颜色来控制,只要求最长路径不超过最短路径的2倍,属于近似平衡

1. 红黑树的概念

        红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是RedBlack。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩 ,因而是接近平衡的。

        在高度方面大致是2logN,比AVL高2倍,但是logN效率很高,对于10亿的数据量,也仅仅是30高度和60高度,这种常数级的效率几乎完全相同!

        所以,红黑树的优点就是高度没有AVL要求那么严格,AVL由于高度的严格要求,它的插入和删除需要大量的旋转,而红黑树就少许多,这就是红黑树的优势 

2. 红黑树的性质

  1. 每个结点不是红色就是黑色

  2. 根节点是黑色的 

  3. 如果一个节点是红色的,则它的两个孩子结点必须是黑色的,即任何路径都没有连续的红色节点

  4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点 ,即每条路径上黑色节点的数量相等

  5. 每个叶子结点(NIL节点)都是黑色的(此处的叶子结点指的是空结点

思考:为什么满足上面的性质,红黑树就能保证:其最长路径中节点个数不会超过最短路径节点个数的两倍?

  1. 如果有一个路径它的节点数最少,那么这个最短路径一定是全黑的!红色的出现会导致节点数增加
  2. 对于最长路径一定是红黑相间的!因为每一条路径的黑色节点数量相同,并且红色的孩子一定是黑色,所以就可以在黑色节点之间插入红色,来增加节点数

3. 红黑树节点的定义

template<class K, class V>
struct RBTreeNode
{RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;pair<K, V> _kv;Colour _col;RBTreeNode(const pair<K, V>& kv):_left(nullptr),_right(nullptr),_parent(nullptr),_kv(kv),_col(RED){}
};template<class K, class V>
class RBTree
{typedef RBTreeNode<K, V> Node;
public:private:Node* root = nullptr;
}

思考:在节点的定义中,为什么要将节点的默认颜色给成红色的?

        新增节点要为红色,因为红色只会影响当前路径,但是如果是黑色,那么会影响所有路径,因为每个路径黑节点数量要相同。所以我们挑一个影响代价最小的方案,即新增节点为红色,此时只需要修改当前路径即可保证结构正确

4. 红黑树的插入操作

        检测新节点插入后,红黑树的性质是否造到破坏

        因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,要开始调色,此时需要对红黑树分情况来讨论:

约定:cur为当前节点,p为父节点(parent),g为祖父节点(grandfather),u为叔叔节点(uncle)

情况一: cur为红,p为红,g为黑,u存在且为红(uncle存在且为红:变色,继续向上更新

解决方式: p,u 改为黑, g 改为红,然后把 g 当成 cur ,继续向上调整

 

	bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);cur->_col = RED;if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent && parent->_col == RED){Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;// u存在且为红if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续向上处理cur = grandfather;parent = cur->_parent;}}}

情况二: cur为红,p为红,g为黑,u不存在(uncle不存在:旋转+变色)

 

旋转策略:

  • pg的左孩子,curp的左孩子,则进行右单旋转
  • pg的右孩子,curp的右孩子,则进行左单旋转
  • pg变色:p变黑,g变红

 

else // u不存在 或 存在且为黑
{if (cur == parent->_left){//     g//   p// cRotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//     g//   p//		cRotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;
}

情况三: cur为红,p为红,g为黑,u为黑 (uncle存在且为黑:旋转+变色)(旋转就是AVL中单旋、双旋操作)

 

        uncle是黑的,表明cur一定不是新增节点,因为每条路径一定的黑节点数量一定相同,所以此情况一定是从下往上更新上来的) 

旋转+变色策略:

  • p为g的左孩子,cur为p的右孩子,则针对p做左单旋转,再对g做右单旋
  • p为g的右孩子,cur为p的左孩子,则针对p做右单旋转,再对g做左单旋
  • pg的左孩子,curp的左孩子,则进行右单旋转
  • pg的右孩子,curp的右孩子,则进行左单旋转(变为情况二)
  • 根据单旋还是双旋进行变色。单旋:pg变色,p变黑,g变红;双旋:cur变黑,g变红

情况二、三都不需要往上继续更新,因为这个结构更新后的根是黑色,不管上面存不存在、或者存在,都不会影响

 

 

小结:

  • 新增节点应为红色
  • 出现连续的红色时,根据uncle分三种情况
  • 如果不是旋转的情况,循环往上继续更新(如果继续出现连续的红才会进入循环);如果是旋转的情况,不用继续往上更新
#pragma once
#pragma once
#include<iostream>
using namespace std;enum Colour
{RED,BLACK
};template<class K, class V>
struct RBTreeNode
{RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;pair<K, V> _kv;Colour _col;RBTreeNode(const pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _col(RED){}
};template<class K, class V>
class RBTree
{typedef RBTreeNode<K, V> Node;
public:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);cur->_col = RED;if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent && parent->_col == RED){Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;// u存在且为红if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续向上处理cur = grandfather;parent = cur->_parent;}else // u不存在 或 存在且为黑{if (cur == parent->_left){//     g//   p// cRotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//     g//   p//		cRotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}else // parent == grandfather->_right{Node* uncle = grandfather->_left;// u存在且为红if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续向上处理cur = grandfather;parent = cur->_parent;}else{if (cur == parent->_right){// g//	  p//       cRotateL(grandfather);grandfather->_col = RED;parent->_col = BLACK;}else{// g//	  p// cRotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return true;}void RotateL(Node* parent){++_rotateCount;Node* cur = parent->_right;Node* curleft = cur->_left;parent->_right = curleft;if (curleft){curleft->_parent = parent;}cur->_left = parent;Node* ppnode = parent->_parent;parent->_parent = cur;if (parent == _root){_root = cur;cur->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = cur;}else{ppnode->_right = cur;}cur->_parent = ppnode;}}void RotateR(Node* parent){++_rotateCount;Node* cur = parent->_left;Node* curright = cur->_right;parent->_left = curright;if (curright)curright->_parent = parent;Node* ppnode = parent->_parent;cur->_right = parent;parent->_parent = cur;if (ppnode == nullptr){_root = cur;cur->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = cur;}else{ppnode->_right = cur;}cur->_parent = ppnode;}}bool CheckColour(Node* root, int blacknum, int benchmark){if (root == nullptr){if (blacknum != benchmark)return false;return true;}if (root->_col == BLACK){++blacknum;}if (root->_col == RED && root->_parent && root->_parent->_col == RED){cout << root->_kv.first << "出现连续红色节点" << endl;return false;}return CheckColour(root->_left, blacknum, benchmark)&& CheckColour(root->_right, blacknum, benchmark);}bool IsBalance(){return IsBalance(_root);}bool IsBalance(Node* root){if (root == nullptr)return true;if (root->_col != BLACK){return false;}// 基准值int benchmark = 0;Node* cur = _root;while (cur){if (cur->_col == BLACK)++benchmark;cur = cur->_left;}return CheckColour(root, 0, benchmark);}int Height(){return Height(_root);}int Height(Node* root){if (root == nullptr)return 0;int leftHeight = Height(root->_left);int rightHeight = Height(root->_right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;}private:Node* _root = nullptr;public:int _rotateCount = 0;
};

 

5. 红黑树的验证

检验:

  • 根节点是黑色
  • 不能有连续的红节点(以子判父更方便,如果从父亲视角看,要分问情况)
  • 每条路径的黑节点数量相等(先算出一个基准值,例如最左路径上黑节点的数量)
	bool CheckColour(Node* root, int blacknum, int benchmark){if (root == nullptr){if (blacknum != benchmark)return false;return true;}if (root->_col == BLACK){++blacknum;}if (root->_col == RED && root->_parent && root->_parent->_col == RED){cout << root->_kv.first << "出现连续红色节点" << endl;return false;}return CheckColour(root->_left, blacknum, benchmark)&& CheckColour(root->_right, blacknum, benchmark);}bool IsBalance(){return IsBalance(_root);}bool IsBalance(Node* root){if (root == nullptr)return true;if (root->_col != BLACK){return false;}// 基准值int benchmark = 0;Node* cur = _root;while (cur){if (cur->_col == BLACK)++benchmark;cur = cur->_left;}return CheckColour(root, 0, benchmark);}int Height(){return Height(_root);}int Height(Node* root){if (root == nullptr)return 0;int leftHeight = Height(root->_left);int rightHeight = Height(root->_right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;}
int main()
{const int N = 10000000;vector<int> v;v.reserve(N);srand(time(0));for (size_t i = 0; i < N; i++){v.push_back(i);}RBTree<int, int> rbt;for (auto e : v){rbt.Insert(make_pair(e, e));//cout << "Insert:" << e << "->" << t.IsBalance() << endl;}return 0;
}

6. 红黑树与AVL树的比较

        红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O( logN ),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多

int main()
{const int N = 100000;vector<int> v;v.reserve(N);srand(time(0));for (size_t i = 0; i < N; i++){v.push_back(rand());}RBTree<int, int> rbt;for (auto e : v){rbt.Insert(make_pair(e, e));//cout << "Insert:" << e << "->" << t.IsBalance() << endl;}cout << rbt.IsBalance() << endl;cout << rbt.Height() << endl;cout << rbt._rotateCount << endl;AVLTree<int, int> avlt;for (auto e : v){avlt.Insert(make_pair(e, e));//cout << "Insert:" << e << "->" << t.IsBalance() << endl;}cout << avlt.IsBalance() << endl;cout << avlt.Height() << endl;cout << avlt._rotateCount << endl;return 0;
}

红黑树的应用

1. C++ STL -- map/setmutil_map/mutil_set

2. Java

3. linux内核

4. 其他一些库

7. 红黑树的删除 

红黑树 - _Never_ - 博客园 (cnblogs.com)

这篇关于<C++> 红黑树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128474

相关文章

C++ 中的 if-constexpr语法和作用

《C++中的if-constexpr语法和作用》if-constexpr语法是C++17引入的新语法特性,也被称为常量if表达式或静态if(staticif),:本文主要介绍C++中的if-c... 目录1 if-constexpr 语法1.1 基本语法1.2 扩展说明1.2.1 条件表达式1.2.2 fa

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

C++从序列容器中删除元素的四种方法

《C++从序列容器中删除元素的四种方法》删除元素的方法在序列容器和关联容器之间是非常不同的,在序列容器中,vector和string是最常用的,但这里也会介绍deque和list以供全面了解,尽管在一... 目录一、简介二、移除给定位置的元素三、移除与某个值相等的元素3.1、序列容器vector、deque

C++常见容器获取头元素的方法大全

《C++常见容器获取头元素的方法大全》在C++编程中,容器是存储和管理数据集合的重要工具,不同的容器提供了不同的接口来访问和操作其中的元素,获取容器的头元素(即第一个元素)是常见的操作之一,本文将详细... 目录一、std::vector二、std::list三、std::deque四、std::forwa

C++字符串提取和分割的多种方法

《C++字符串提取和分割的多种方法》在C++编程中,字符串处理是一个常见的任务,尤其是在需要从字符串中提取特定数据时,本文将详细探讨如何使用C++标准库中的工具来提取和分割字符串,并分析不同方法的适用... 目录1. 字符串提取的基本方法1.1 使用 std::istringstream 和 >> 操作符示

C++原地删除有序数组重复项的N种方法

《C++原地删除有序数组重复项的N种方法》给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度,不要使用额外的数组空间,你必须在原地修改输入数组并在使用O(... 目录一、问题二、问题分析三、算法实现四、问题变体:最多保留两次五、分析和代码实现5.1、问题分析5.

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

利用Python和C++解析gltf文件的示例详解

《利用Python和C++解析gltf文件的示例详解》gltf,全称是GLTransmissionFormat,是一种开放的3D文件格式,Python和C++是两个非常强大的工具,下面我们就来看看如何... 目录什么是gltf文件选择语言的原因安装必要的库解析gltf文件的步骤1. 读取gltf文件2. 提

C++快速排序超详细讲解

《C++快速排序超详细讲解》快速排序是一种高效的排序算法,通过分治法将数组划分为两部分,递归排序,直到整个数组有序,通过代码解析和示例,详细解释了快速排序的工作原理和实现过程,需要的朋友可以参考下... 目录一、快速排序原理二、快速排序标准代码三、代码解析四、使用while循环的快速排序1.代码代码1.由快