使用 Eigen 库中的 Kronecker 积运算

2024-09-02 00:04

本文主要是介绍使用 Eigen 库中的 Kronecker 积运算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在数值计算和线性代数的众多应用中,Kronecker 积(Kronecker Product)是一种常用的矩阵运算。Eigen 是一个高性能的 C++ 数值计算库,广泛用于科学计算和工程应用中。在 Eigen 库中,Kronecker 积运算属于不常用的扩展功能,因此被放置在 unsupported 模块中。

本文将介绍如何在 Eigen 中使用 Kronecker 积,并解释为什么这个功能位于 unsupported 模块中。

什么是 Kronecker 积?

Kronecker 积是两个矩阵之间的二元运算,其结果是一个更大的矩阵。具体来说,如果矩阵 A 的尺寸为 m x n,矩阵 B 的尺寸为 p x q,那么 Kronecker 积A ⊗ B的结果矩阵将具有尺寸 mp x nq。

例如,假设我们有以下两个矩阵:

A = [1 2][3 4]B = [0 5][6 7]

它们的 Kronecker 积 A ⊗ B 结果为:

A ⊗ B = [ 0  5  0 10][ 6  7 12 14][ 0 15  0 20][18 21 24 28]

在 Eigen 中使用 Kronecker 积

在 Eigen 库中,Kronecker 积函数 kroneckerProduct 位于 unsupported 模块中,因此需要引入特定的头文件。

引入头文件

首先,需要在代码中包含以下头文件:

#include <unsupported/Eigen/KroneckerProduct>

注意: 如果你的项目使用了 Eigen,通常你会包含 Eigen 的核心模块头文件,例如:

#include <Eigen/Dense>

然而,kroneckerProduct 函数并不在这些核心模块中,而是在 unsupported 模块中提供,因此需要单独包含。

示例代码

下面是一个完整的示例,演示如何在 Eigen 中计算两个矩阵的 Kronecker 积:

#include <iostream>
#include <Eigen/Dense>
#include <unsupported/Eigen/KroneckerProduct>int main() {Eigen::Matrix2d A;A << 1, 2,3, 4;Eigen::Matrix2d B;B << 0, 5,6, 7;Eigen::Matrix4d C = Eigen::kroneckerProduct(A, B);std::cout << "Kronecker Product of A and B is:\n" << C << std::endl;return 0;
}

编译并运行这个程序,将得到如下输出:

Kronecker Product of A and B is:0  5  0 106  7 12 140 15  0 20
18 21 24 28

具体计算过程

给定矩阵:

A = [ 1 2 3 4 ] A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} A=[1324]

B = [ 0 5 6 7 ] B = \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} B=[0657]

Kronecker 积 A ⊗ B A \otimes B AB 计算步骤如下:

  1. 矩阵 A A A 的元素分别为:

a 11 = 1 , a 12 = 2 , a 21 = 3 , a 22 = 4 a_{11} = 1, \quad a_{12} = 2, \quad a_{21} = 3, \quad a_{22} = 4 a11=1,a12=2,a21=3,a22=4

  1. 矩阵 B B B 为:

B = [ 0 5 6 7 ] B = \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} B=[0657]

  1. 计算每个块矩阵:

a 11 B = 1 ⋅ [ 0 5 6 7 ] = [ 0 5 6 7 ] a_{11}B = 1 \cdot \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} a11B=1[0657]=[0657]

a 12 B = 2 ⋅ [ 0 5 6 7 ] = [ 0 10 12 14 ] a_{12}B = 2 \cdot \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 10 \\ 12 & 14 \end{bmatrix} a12B=2[0657]=[0121014]

a 21 B = 3 ⋅ [ 0 5 6 7 ] = [ 0 15 18 21 ] a_{21}B = 3 \cdot \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 15 \\ 18 & 21 \end{bmatrix} a21B=3[0657]=[0181521]

a 22 B = 4 ⋅ [ 0 5 6 7 ] = [ 0 20 24 28 ] a_{22}B = 4 \cdot \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 20 \\ 24 & 28 \end{bmatrix} a22B=4[0657]=[0242028]

  1. 将这些块矩阵排列成最终的 Kronecker 积矩阵:

A ⊗ B = [ a 11 B a 12 B a 21 B a 22 B ] = [ 0 5 0 10 6 7 12 14 0 15 0 20 18 21 24 28 ] A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B \\ a_{21}B & a_{22}B \end{bmatrix} = \begin{bmatrix} 0 & 5 & 0 & 10 \\ 6 & 7 & 12 & 14 \\ 0 & 15 & 0 & 20 \\ 18 & 21 & 24 & 28 \end{bmatrix} AB=[a11Ba21Ba12Ba22B]= 0601857152101202410142028

总结

在这里插入图片描述

Eigen 库为 C++ 提供了强大的数值计算功能,其中包括通过unsupported/Eigen/KroneckerProduct 头文件引入的 Kronecker 积运算。

这篇关于使用 Eigen 库中的 Kronecker 积运算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128429

相关文章

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详