[pytorch] --- pytorch基础之transforms

2024-09-01 22:52
文章标签 基础 pytorch transforms

本文主要是介绍[pytorch] --- pytorch基础之transforms,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 pytorch中transforms介绍

transforms是torchvision中的一个模块(torchvision 是Pytorch的计算机视觉工具包),该模块定义了很多用于图像预处理的类,列举如下:

    数据中心化数据标准化缩放裁剪旋转翻转填充噪声添加灰度变换线性变换仿射变换亮度、饱和度以及对比度变换等。

通过实例化该工具类,可以方便地对图像进行各种变换操作。

transforms 本质就是一个python文件,相当于一个工具箱,里面包含诸如 Resize、ToTensor、Normalize 等类,这些类就是我们需要用到的图像预处理工具。transforms 的使用无非是将图像通过工具转换成我们需要的结果。

2 Transforms 的使用

transform模块中存在许多类:
在这里插入图片描述

在使用transforms中的模块时,需要 :

  • 实例化 某一特定工具类: tool = transforms.tool() 获得工具类的实例对象;
  • 对需要的结果进行转换 : result = tool(input) 获得结果

2.1 ToTensor()

ToTensor()类作用:将PIL图像或NumPy ndarray 转换为PyTorch张量,‌并将像素值从[0, 255]缩放到[0.0, 1.0]。‌

from torchvision import transforms
from PIL import Imageimg_path  = "hymenoptera_data/train/ants_img/0013035.jpg"
img = Image.open(img_path)
print(img)  #<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=768x512 at 0x15424866150># 下面是 把图像的像素值从[0, 255]缩放到[0.0, 1.0]
transforms_to_tensor =  transforms.ToTensor()
img_tensor = transforms_to_tensor(img)
print(img_tensor)   # 将图像数据 转换为 tensor 类型的数据

执行结果如下:

/home/decre/miniconda3/envs/pytorch/bin/python /home/decre/work/ybb/base_pytorch/03_transform.py 
<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=768x512 at 0x7548E9710D60>
tensor([[[0.3137, 0.3137, 0.3137,  ..., 0.3176, 0.3098, 0.2980],[0.3176, 0.3176, 0.3176,  ..., 0.3176, 0.3098, 0.2980],[0.3216, 0.3216, 0.3216,  ..., 0.3137, 0.3098, 0.3020],...,[0.3412, 0.3412, 0.3373,  ..., 0.1725, 0.3725, 0.3529],[0.3412, 0.3412, 0.3373,  ..., 0.3294, 0.3529, 0.3294],[0.3412, 0.3412, 0.3373,  ..., 0.3098, 0.3059, 0.3294]],[[0.5922, 0.5922, 0.5922,  ..., 0.5961, 0.5882, 0.5765],[0.5961, 0.5961, 0.5961,  ..., 0.5961, 0.5882, 0.5765],[0.6000, 0.6000, 0.6000,  ..., 0.5922, 0.5882, 0.5804],...,[0.6275, 0.6275, 0.6235,  ..., 0.3608, 0.6196, 0.6157],[0.6275, 0.6275, 0.6235,  ..., 0.5765, 0.6275, 0.5961],[0.6275, 0.6275, 0.6235,  ..., 0.6275, 0.6235, 0.6314]],[[0.9137, 0.9137, 0.9137,  ..., 0.9176, 0.9098, 0.8980],[0.9176, 0.9176, 0.9176,  ..., 0.9176, 0.9098, 0.8980],[0.9216, 0.9216, 0.9216,  ..., 0.9137, 0.9098, 0.9020],...,[0.9294, 0.9294, 0.9255,  ..., 0.5529, 0.9216, 0.8941],[0.9294, 0.9294, 0.9255,  ..., 0.8863, 1.0000, 0.9137],[0.9294, 0.9294, 0.9255,  ..., 0.9490, 0.9804, 0.9137]]])Process finished with exit code 0

2.2 ToPILImage()

ToPILImage()作用: 将PyTorch张量转换回PIL图像

Tensor_to_PIL = transforms.ToPILImage()
img_PIL = Tensor_to_PIL(img_tensor)
print(img_PIL)
img_PIL.show()

2.3 Normalize()

# 归一化
# Normalize a tensor image with mean and standard deviation.
# 初始化参数: mean, std, inplace=False
# 计算公式:output[channel] = (input[channel] - mean[channel]) / std[channel]
"""
以下述 mean 与  std 为例:output = (input - 0.5) / 0.5=> output =  2 * input - 1=> 又因为 input = [0,1]=> 所以  output = [-1,1]
"""
trans_norm = transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])
img_norm = trans_norm(img_tensor)
print(img_norm)write.add_image("Normalize",img_norm)
write.close()

结果归一化后的 图像:

2.4 Resize()

Resize()作用: 调整图像的尺寸

__init__(self, size, interpolation=InterpolationMode.BILINEAR, max_size=None, antialias=True):size : 如果size是一个序列(h,w),输出大小将与此匹配。  如果size是int(只有一个数据),图像的较小边缘将与该数字匹配。即,如果高度>宽度,则图像将被重新缩放为(size * height / width, size)。interpolation: 指定图像缩放时采用的插值方法。‌插值方法决定了新图像中像素值的计算方式,‌从而影响缩放后图像的质量。‌

Note: 经过 resize 之后,img 的类型仍然是 PIL 类型。因此,后续如果使用,需要 将该类型转为 tensor 类型

2.5 RandomCrop()

随即裁剪:def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant")size :  (h,w) 类型:依照 长、宽裁剪; int 类型:方形裁剪(int,int)padding:  边框填充,如果提供了单个int,则用于填充所有边框。如果提供了长度为2的序列,则这是填充分别位于左侧/右侧和顶部/底部。如果提供长度为4的序列,这是分别用于左、上、右和下边框的填充。
# RandomCrop 随机裁剪
#def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant")
trans_randcrop = transforms.RandomCrop(100,10)
for i in range(10):img_crop = trans_randcrop(img)img_crop = transforms_to_tensor(img_crop)write.add_image("RandmCrop",img_crop,i)
write.close()

2.6 Compose()

将多个操作,作为一个序列完成。
其参数为 一个列表 [ transforms1, transforms2 … ]

trans_resize = transforms.Resize((512,512))
trans_norm = transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])
transforms_to_tensor =  transforms.ToTensor()trans_comp = transforms.Compose([trans_resize, transforms_to_tensor,trans_norm])
img_comp =  trans_comp(img)
write.add_image("Compose",img_comp)

上述代码:依次进行了 : 缩放、toTensor、归一化

3 总结

transform使用方法是:
1> 首先 关注 它的 输入 需要什么样的 数据类型,是PIL,是Numpy,是Tensor …
2> 关注 它的 输出是什么样的数据类型
3> 查看 官方文档的参数

上面实验使用到的全部代码

from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import SummaryWriterimg_path  = "hymenoptera_data/train/ants_img/0013035.jpg"
img = Image.open(img_path)
print(img)  #<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=768x512 at 0x15424866150># 下面是 把图像的像素值从[0, 255]缩放到[0.0, 1.0]
transforms_to_tensor =  transforms.ToTensor()
img_tensor = transforms_to_tensor(img)
print(img_tensor)   # 将图像数据 转换为 tensor 类型的数据write = SummaryWriter("logs")
write.add_image("ToTensor",img_tensor)# Tensor_to_PIL = transforms.ToPILImage()
# img_PIL = Tensor_to_PIL(img_tensor)
# print(img_PIL)
# #img_PIL.show()# 归一化
#Normalize a tensor image with mean and standard deviation.
# 初始化参数: mean, std, inplace=False
# 计算公式:output[channel] = (input[channel] - mean[channel]) / std[channel]
"""
以下述 mean 与  std 为例:output = (input - 0.5) / 0.5=> output =  2 * input - 1=> 又因为 input = [0,1]=> 所以  output = [-1,1]
"""
trans_norm = transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])
img_norm = trans_norm(img_tensor)
print(img_norm)write.add_image("Normalize",img_norm)# Resize()
print(img.size)       # (768, 512)
trans_resize = transforms.Resize((512,512))
img_resize =  trans_resize(img)
print(img_resize)     # <PIL.Image.Image image mode=RGB size=512x512 at 0x225ED6223F0>
img_resize = transforms_to_tensor(img_resize)  # PIL 类型 转为 tensor 类型
print(img_resize)
write.add_image("Resize",img_resize)trans_comp = transforms.Compose([trans_resize, transforms_to_tensor])
img_comp =  trans_comp(img)
write.add_image("Compose",img_comp)# RandomCrop 随机裁剪
#def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant")
trans_randcrop = transforms.RandomCrop(100,10)
for i in range(10):img_crop = trans_randcrop(img)img_crop = transforms_to_tensor(img_crop)write.add_image("RandmCrop",img_crop,i)
write.close()

这篇关于[pytorch] --- pytorch基础之transforms的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128275

相关文章

Java利用Spire.Doc for Java实现在模板的基础上创建Word文档

《Java利用Spire.DocforJava实现在模板的基础上创建Word文档》在日常开发中,我们经常需要根据特定数据动态生成Word文档,本文将深入探讨如何利用强大的Java库Spire.Do... 目录1. Spire.Doc for Java 库介绍与安装特点与优势Maven 依赖配置2. 通过替换

JavaScript装饰器从基础到实战教程

《JavaScript装饰器从基础到实战教程》装饰器是js中一种声明式语法特性,用于在不修改原始代码的情况下,动态扩展类、方法、属性或参数的行为,本文将从基础概念入手,逐步讲解装饰器的类型、用法、进阶... 目录一、装饰器基础概念1.1 什么是装饰器?1.2 装饰器的语法1.3 装饰器的执行时机二、装饰器的

Java JAR 启动内存参数配置指南(从基础设置到性能优化)

《JavaJAR启动内存参数配置指南(从基础设置到性能优化)》在启动Java可执行JAR文件时,合理配置JVM内存参数是保障应用稳定性和性能的关键,本文将系统讲解如何通过命令行参数、环境变量等方式... 目录一、核心内存参数详解1.1 堆内存配置1.2 元空间配置(MetASPace)1.3 线程栈配置1.

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Spring的基础事务注解@Transactional作用解读

《Spring的基础事务注解@Transactional作用解读》文章介绍了Spring框架中的事务管理,核心注解@Transactional用于声明事务,支持传播机制、隔离级别等配置,结合@Tran... 目录一、事务管理基础1.1 Spring事务的核心注解1.2 注解属性详解1.3 实现原理二、事务事

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We