算法训练营——day1数组二分查找

2024-09-01 22:28

本文主要是介绍算法训练营——day1数组二分查找,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数组是存放在连续空间上的相同数据类型的集合。

注意:下标从0开始;内存空间连续。

正因为数组的内存地址空间连续,所以在删除、添加元素的时候需要移动其他元素。

数组的元素不能删除,只能覆盖!

二维数组特殊

在C++中,二位数组在内存中也是连续的,相当于多个一维数组。

void test_arr() {int array[2][3] = {{0, 1, 2},{3, 4, 5}};cout << &array[0][0] << " " << &array[0][1] << " " << &array[0][2] << endl;cout << &array[1][0] << " " << &array[1][1] << " " << &array[1][2] << endl;
}int main() {test_arr();
}Result:
0x7ffee4065820 0x7ffee4065824 0x7ffee4065828
0x7ffee406582c 0x7ffee4065830 0x7ffee4065834
由于是int类型,所有每个之间差4字节

而在Java中,由于是由JVM处理,所以毫无规则可言。

public static void test_arr() {int[][] arr = {{1, 2, 3}, {3, 4, 5}, {6, 7, 8}, {9,9,9}};System.out.println(arr[0]);System.out.println(arr[1]);System.out.println(arr[2]);System.out.println(arr[3]);
}
Result:
[I@7852e922
[I@4e25154f
[I@70dea4e
[I@5c647e05

练习题

1. 二分查找-力扣704(简单)

1.1 题目704. 二分查找

1.2 全闭区间写法

我们定义 target 是在一个在左闭右闭的区间里,也就是[left, right] 

因为定义target在[left, right]区间,所以有如下两点:

  • while (left <= right) 要使用 <= ,因为left == right是有意义的,所以使用 <=
  • if (nums[middle] > target) right 要赋值为 middle - 1,因为当前这个nums[middle]一定不是target,那么接下来要查找的左区间结束下标位置就是 middle - 1
  • 时间复杂度:O(log n)
  • 空间复杂度:O(1)
//Java代码:
class Solution {public int search(int[] nums, int target) {
// 避免当 target 小于nums[0] nums[nums.length - 1]时多次循环运算if(target<nums[0]||target>nums[nums.length-1]){return -1;}int left=0;int right=nums.length-1;while(left<=right){int mid = left+(right-left)/2;if(nums[mid]>target){right=mid-1;}else if(nums[mid]<target){left=mid+1;}else{return mid;}}return -1;}
}

1.3 左闭右开

如果说定义 target 是在一个在左闭右开的区间里,也就是[left, right) 

有如下两点:

  • while (left < right),这里使用 < ,因为left == right在区间[left, right)是没有意义的
  • if (nums[middle] > target) right 更新为 middle,因为当前nums[middle]不等于target,去左区间继续寻找,而寻找区间是左闭右开区间,所以right更新为middle,即:下一个查询区间不会去比较nums[middle]
//左闭右开
class Solution {public int search(int[] nums, int target) {int left=0;int right=nums.length;while(left<right){int mid = left+(right-left)/2;if(nums[mid]>target){right=mid;}else if(nums[mid]<target){left=mid+1;}else{return mid;}}return -1;}
}

2 搜索位置-力扣35(简单)

2.1 题目35:搜索插入位置

2.2 二分解法(Java)

class Solution {public int searchInsert(int[] nums, int target) {//二分法int left = 0;int right = nums.length-1;while(left<=right){int mid = left+(right-left)/2;if(target==nums[mid]){return mid;}else if(target<nums[mid]){right=mid-1;}else if(target>nums[mid]){left=mid+1;}}return right+1;}
}

2.3 C解法

class Solution {// lower_bound 返回最小的满足 nums[i] >= target 的 i// 如果数组为空,或者所有数都 < target,则返回 nums.size()// 要求 nums 是非递减的,即 nums[i] <= nums[i + 1]// 闭区间写法int lower_bound(vector<int>& nums, int target) {int left = 0, right = (int) nums.size() - 1; // 闭区间 [left, right]while (left <= right) { // 区间不为空// 循环不变量:// nums[left-1] < target// nums[right+1] >= targetint mid = left + (right - left) / 2;if (nums[mid] < target) {left = mid + 1; // 范围缩小到 [mid+1, right]} else {right = mid - 1; // 范围缩小到 [left, mid-1]}}return left;}// 左闭右开区间写法int lower_bound2(vector<int>& nums, int target) {int left = 0, right = nums.size(); // 左闭右开区间 [left, right)while (left < right) { // 区间不为空// 循环不变量:// nums[left-1] < target// nums[right] >= targetint mid = left + (right - left) / 2;if (nums[mid] < target) {left = mid + 1; // 范围缩小到 [mid+1, right)} else {right = mid; // 范围缩小到 [left, mid)}}return left;}// 开区间写法int lower_bound3(vector<int>& nums, int target) {int left = -1, right = nums.size(); // 开区间 (left, right)while (left + 1 < right) { // 区间不为空// 循环不变量:// nums[left] < target// nums[right] >= targetint mid = left + (right - left) / 2;if (nums[mid] < target) {left = mid; // 范围缩小到 (mid, right)} else {right = mid; // 范围缩小到 (left, mid)}}return right;}public:int searchInsert(vector<int>& nums, int target) {return lower_bound(nums, target); // 选择其中一种写法即可}
};

3 查找元素第一位和最后一位的下标-力扣34(中等)

3.1 题目:34在排序数组中查找元素的第一个和最后一个位置

3.2 解法JAVA

寻找target在数组里的左右边界,有如下三种情况:

  • 情况一:target 在数组范围的右边或者左边,例如数组{3, 4, 5},target为2或者数组{3, 4, 5},target为6,此时应该返回{-1, -1}
  • 情况二:target 在数组范围中,且数组中不存在target,例如数组{3,6,7},target为5,此时应该返回{-1, -1}
  • 情况三:target 在数组范围中,且数组中存在target,例如数组{3,6,7},target为6,此时应该返回{1, 1}
//JAVA版本
class Solution {int[] searchRange(int[] nums, int target) {int leftBorder = getLeftBorder(nums, target);int rightBorder = getRightBorder(nums, target);// 情况一:不在数组范围内if (leftBorder == -2 || rightBorder == -2) return new int[]{-1, -1};// 情况三:找到了这个数字if (rightBorder - leftBorder > 1) return new int[]{leftBorder + 1, rightBorder - 1};// 情况二:在数组范围内但是没有这个数字return new int[]{-1, -1};}int getRightBorder(int[] nums, int target) {int left = 0;int right = nums.length - 1;int rightBorder = -2; // 记录一下rightBorder没有被赋值的情况while (left <= right) {int middle = left + ((right - left) / 2);if (nums[middle] > target) {right = middle - 1;} else { // 寻找右边界,nums[middle] == target的时候更新leftleft = middle + 1;rightBorder = left;}}return rightBorder;}int getLeftBorder(int[] nums, int target) {int left = 0;int right = nums.length - 1;int leftBorder = -2; // 记录一下leftBorder没有被赋值的情况while (left <= right) {int middle = left + ((right - left) / 2);if (nums[middle] >= target) { // 寻找左边界,nums[middle] == target的时候更新rightright = middle - 1;leftBorder = right;} else {left = middle + 1;}}return leftBorder;}
}

3.2 解法C

//C嘎嘎版本
class Solution {
public:vector<int> searchRange(vector<int>& nums, int target) {int leftBorder = getLeftBorder(nums, target);int rightBorder = getRightBorder(nums, target);// 情况一if (leftBorder == -2 || rightBorder == -2) return {-1, -1};// 情况三if (rightBorder - leftBorder > 1) return {leftBorder + 1, rightBorder - 1};// 情况二return {-1, -1};}
private:int getRightBorder(vector<int>& nums, int target) {int left = 0;int right = nums.size() - 1;int rightBorder = -2; // 记录一下rightBorder没有被赋值的情况while (left <= right) {int middle = left + ((right - left) / 2);if (nums[middle] > target) {right = middle - 1;} else { // 寻找右边界,nums[middle] == target的时候更新leftleft = middle + 1;rightBorder = left;}}return rightBorder;}int getLeftBorder(vector<int>& nums, int target) {int left = 0;int right = nums.size() - 1;int leftBorder = -2; // 记录一下leftBorder没有被赋值的情况while (left <= right) {int middle = left + ((right - left) / 2);if (nums[middle] >= target) { // 寻找左边界,nums[middle] == target的时候更新rightright = middle - 1;leftBorder = right;} else {left = middle + 1;}}return leftBorder;}
};

4 平方根-力扣69(简单)

4.1 题目:x 的平方根 

4.2 二分法求解

class Solution {public int mySqrt(int x) {int left=0;int ret=-1;int right=x;while(left<=right){int mid = left+(right-left)/2;if((long)mid*mid<=x){ret = mid;left=mid+1;}else{right=mid-1;}}return ret;}
}

5 有效完全平方数-力扣367(简单)

5.1 题目:367. 有效的完全平方数

5.2 暴力与二分

//暴力解法
class Solution {public boolean isPerfectSquare(int num) {long x=1;long sq=1;while(sq<=num){if(sq==num){return true;}x++;sq=x*x;}return false;}
}
class Solution {public boolean isPerfectSquare(int num) {//二分int left=0;int right=num;while(left<=right){int mid = left+(right-left)/2;long sq = (long) mid*mid;if(sq<num){left=mid+1;}else if(sq>num){right=mid-1;}else {return true;}}return false;}
}

这篇关于算法训练营——day1数组二分查找的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128214

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

hdu 1166 敌兵布阵(树状数组 or 线段树)

题意是求一个线段的和,在线段上可以进行加减的修改。 树状数组的模板题。 代码: #include <stdio.h>#include <string.h>const int maxn = 50000 + 1;int c[maxn];int n;int lowbit(int x){return x & -x;}void add(int x, int num){while

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费