回溯法-0/1背包问题

2024-09-01 22:12
文章标签 问题 背包 回溯

本文主要是介绍回溯法-0/1背包问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是回溯法?

回溯法是一种搜索算法,它通过深度优先搜索的方式来解决决策问题。它从根节点开始,逐步扩展节点,直到找到所有可能的解。

回溯法的基本思想

  1. 开始节点:从根节点出发,这个节点是解空间的起点。
  2. 扩展节点:在当前节点上,选择一个方向继续搜索,这个方向会形成一个新的节点。
  3. 活节点与死节点:如果新节点有更多选择,它就是活节点;如果所有选择都已尝试,它就是死节点。
  4. 回溯:如果当前路径不是解,回溯到上一个活节点,尝试其他选择。

优化方法

为了提高搜索效率,我们使用两种剪枝技术:

  1. 剪枝一:如果当前物品的加入使得总重量超过背包容量,停止搜索这个方向。
  2. 剪枝二:如果剩余物品即使全部加入,也不能超过当前已知的最优解,停止搜索这个方向。

什么是0/1背包问题?

想象一下,你有一个背包,容量有限。你面前有n种不同的物品,每种物品都有自己的重量和价值。你的目标是选择一些物品放入背包,使得背包里物品的总价值最大,但总重量不能超过背包的容量。

算法描述

给定物品数量n,物品i的重量是wi>0,其价值为vi>0,背包的容量为c。我们的目标是找到一种物品组合,使得总价值最大,且总重量不超过c。

步骤

  1. 初始化:设置一个数组或列表来记录选择的物品。
  2. 递归函数:定义一个递归函数,接收当前物品索引、当前重量和当前价值作为参数。
  3. 边界条件:如果当前重量超过背包容量或已处理完所有物品,回溯。
  4. 选择与不选择:对于每种物品,尝试选择它或不选择它,然后递归调用函数。
  5. 更新最优解:每次找到一个解时,比较并更新已知的最优解。

0/1背包问题算法设计

算法目标

我们的目标是找出一个解向量 ( xi ),其中 ( xi = 0 ) 表示不放入物品 ( i ),( xi = 1 ) 表示放入物品 ( i )。

递归函数 Backtrack

  1. 叶子节点:如果 ( i > n ),我们到达了一个新的物品装包方案,更新最优价值。
  2. 扩展节点:如果 ( i < n ),当前节点在排列树的第 (i-1) 层,递归搜索子树,剪去不满足约束的节点。

实例

输入

  • 物品价值 ( V = {12, 11, 9, 8} )
  • 物品重量 ( W = {8, 6, 4, 3} )
  • 背包容量 ( B = 13 )

可行解

  • 解1: ( x = <0, 1, 1, 1> ) 选入物品2, 3, 4,总价值28,总重量13
  • 解2: ( x = <1, 0, 1, 0> ) 选入物品1, 3,总价值21,总重量12

最优解

  • 最优解: ( x = <0, 1, 1, 1> )

定义

  • ( CW )(Current Weight): 当前重量
  • ( CP )(Current Price): 当前价值

执行步骤

  1. 计算单位价值:降序排列物品。
  2. 从根节点出发:根节点代表当前扩展节点。
  3. 搜索左子树:判断物品是否装入背包。
    • 可行,更新 ( CW ) 和 ( CP ),继续遍历。
    • 不可行,回溯,尝试右子树。
  4. 计算上界 ( bound(i) ):
    • 若 ( bound(i) < bestp ),剪枝。
    • 否则,继续搜索。
  5. 叶子节点:比较 ( CP ) 与 ( bestp ),更新 ( bestp )。
  6. 遍历所有节点:完成搜索。

举例说明

已知 ( p = {45, 25, 24} ), ( w = {16, 15, 15} ), 背包容量为30,求最优价值。

步骤1:计算单位价值并排序

首先,我们需要计算每个物品的单位价值,即每个物品的价值除以其重量。然后,我们将物品按照单位价值从高到低进行排序。在这个例子中,物品的原始顺序恰好是单位价值降序排列。

步骤2:开始遍历并判断是否装入背包

我们将按照排序后的物品顺序,逐个考虑每个物品是否装入背包。

遍历过程说明

  • B1, B2:代表同一种物品B的不同节点。
  • C1, C2, C3, C4:代表同一种物品C的不同节点。
  • 这样的表示方法有助于我们区分在遍历过程中的不同节点。

具体步骤

  1. 考虑物品B1:首先尝试将物品B1装入背包。如果B1的重量加上当前背包重量(CW)不超过背包总容量(本例中为30),则B1可以装入背包。此时,背包重量更新为CW = 16,背包价值更新为CP = 45。

  2. 遍历B1的左子树:继续考虑B1后面的物品,如果剩余容量不足以装入下一个物品,我们就剪去这条路径。

  3. 进入B1的右子树:如果B1可以装入,我们继续考虑其他物品。在右子树中,我们到达物品C2,并计算上界值bound(i)。如果bound(i)大于当前最优价值bestp,则继续向下遍历。

  4. 到达叶子节点:如果在遍历中到达叶子节点,我们比较当前价值(CP)与最优价值(bestp),如果CP更大,则更新最优价值。

  5. 回溯:如果发现某条路径不可能产生更好的解,我们回溯到上一个决策点,尝试其他可能性。

示例遍历

  • 装入物品B1,CW = 16, CP = 45。
  • 尝试装入物品C1,但因剩余容量不足而剪枝。
  • 继续考虑C2,计算bound(i)=45+(25/15)**14=45+1.66*14=68.3,大于当前最优价值45,继续遍历。
  • 到达C2的叶子节点,记录最优价值bestp = 45。
  • 回溯,尝试其他物品B2,更新bound(i)为49,继续遍历。
  • 装入物品C3,CW = 15, CP = 25,继续考虑下一个物品。
  • 装入物品D5,CW = 30, CP = 49,更新最优价值bestp = 49。
  • 继续回溯,考虑其他可能的组合直到所有节点遍历完毕。

结果

经过所有可能的遍历和回溯,我们发现最优的背包装载方案价值为49,对应的物品组合为CD。

遍历过程图示

在这里插入图片描述
bound = 45+14*(24/15)=67.4

代码

#include <iostream> // 引入标准输入输出流库
#include <stdio.h>  // 引入C标准库,提供输入输出函数
using namespace std; // 使用标准命名空间// 定义全局变量
int n; // 物品数量
double c; // 背包容量
double v[100]; // 各个物品的价值数组
double w[100]; // 各个物品的重量数组
double cw = 0.0; // 当前背包重量
double cp = 0.0; // 当前背包中物品的总价值
double bestp = 0.0; // 记录找到的最优价值
double perp[100]; // 存储物品的单位价值,用于排序
int order[100]; // 存储物品的原始索引,用于排序后恢复
int put[100]; // 标记每个物品是否被选中放入背包,1表示放入,0表示不放入// 按单位价值对物品进行排序的函数
void knapsack() {int i, j; // 循环变量int temporder = 0; // 用于交换的临时变量double temp = 0.0; // 用于交换的临时变量// 计算每个物品的单位价值并存放到数组perp中for(i = 1; i <= n; i++) {perp[i] = v[i] / w[i];}// 使用冒泡排序算法按单位价值对物品进行排序for(i = 1; i <= n - 1; i++) {for(j = i + 1; j <= n; j++) {// 如果当前物品的单位价值小于下一个物品,则交换它们的位置if(perp[i] < perp[j]) {// 交换perp数组中的元素temp = perp[i];perp[i] = perp[j];perp[j] = temp;// 交换order数组中的元素,以保持物品原来的顺序temporder = order[i];order[i] = order[j];order[j] = temporder;// 交换v数组中的元素,以保持物品价值的一致性temp = v[i];v[i] = v[j];v[j] = temp;// 交换w数组中的元素,以保持物品重量的一致性temp = w[i];w[i] = w[j];w[j] = temp;}}}
}// 回溯函数,用于搜索最优解
void backtrack(int i) {// i表示当前正在考虑的物品索引if(i > n) { // 如果已经考虑完所有物品,则结束递归bestp = cp; // 更新最优价值为当前价值return;}// 如果当前物品可以放入背包,更新背包状态并继续搜索左子树if(cw + w[i] <= c) {cw += w[i]; // 将物品重量加到当前背包重量cp += v[i]; // 将物品价值加到当前背包价值put[i] = 1; // 标记当前物品已放入背包backtrack(i + 1); // 递归搜索下一件物品// 回溯,撤销上一步操作cw -= w[i];cp -= v[i];put[i] = 0;}// 计算当前扩展节点的上界,如果上界大于当前最优价值,则继续搜索右子树double boundValue = bound(i + 1);if(boundValue > bestp) {backtrack(i + 1);}
}// 计算上界函数,用于剪枝以减少搜索空间
double bound(int i) {// 计算剩余背包容量double leftw = c - cw;double b = cp; // 当前背包的总价值// 遍历剩余物品,尝试以单位价值递减的顺序装入背包while(i <= n && w[i] <= leftw) {leftw -= w[i]; // 更新剩余容量b += v[i]; // 更新总价值i++; // 移动到下一个物品}// 如果还有剩余容量,尝试用最大单位价值的物品填充if(i <= n) {b += (v[i] / w[i]) * leftw;}return b; // 返回计算出的上界
}// 主函数,程序入口点
int main() {int i; // 循环变量// 从用户那里获取物品数量和背包容量printf("请输入物品的数量和背包的容量:");scanf("%d %lf", &n, &c);// 从用户那里获取每个物品的重量printf("请依次输入%d个物品的重量:\n", n);for(i = 1; i <= n; i++) {scanf("%lf", &w[i]);order[i] = i; // 初始化物品的原始索引}// 从用户那里获取每个物品的价值printf("请依次输入%d个物品的价值:\n", n);for(i = 1; i <= n; i++) {scanf("%lf", &v[i]);}// 调用排序函数和回溯函数knapsack();backtrack(1);// 输出最优价值和需要装入背包的物品编号printf("最优价值为:%lf\n", bestp);printf("需要装入的物品编号是:");for(i = 1; i <= n; i++) {if(put[i] == 1) {printf("%d ", order[i]);}}printf("\n"); // 输出换行符,美化输出格式return 0; // 程序正常结束
}

在这里插入图片描述

时间复杂度

因为物品只有选与不选2个决策,而总共有n个物品,所以时间复杂度为在这里插入图片描述

因为递归栈最多达到n层,而且存储所有物品的信息也只需要常数个一维数组,所以最终的空间复杂度为O(n)。

这篇关于回溯法-0/1背包问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128190

相关文章

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2