Linux驱动开发基础(DS18B20温度模块)

2024-09-01 17:20

本文主要是介绍Linux驱动开发基础(DS18B20温度模块),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

所学来自百问网

目录

1.DS18B20 简介

2.硬件设计

3.软件设计

3.1 存储器介绍

3.2 通信时序

3.2.1 初始化时序

3.2.2 写时序

3.2.3 读时序

3.3 常用命令

4. 示例代码

4.1 驱动代码

4.2 应用代码

4.3 Makefile

4.4 实验效果


1.DS18B20 简介

DS18B20 温度传感器具有线路简单、体积小的特点,用来测量温度非常简单, 在一根通信线上可以挂载多个 DS18B20 温度传感器。用户可以通过编程实现 9~12 位的温度读数,每个DS18B20有唯一的64位序列号,保存在rom中,因 此一条总线上可以挂载多个DS18B20。

2.硬件设计

DS18B20 也使用的是“1-Wire单总线”,只通过一条数据线传输数据,既要控制器发送数据给芯片,又要通过芯片发送数据给控制器,是双向传输数据。

原理图如下:

3.软件设计

3.1 存储器介绍

DS18B20内部有个64位只读存储器(ROM)和 64位配置存储器(SCRATCHP)。 64 位只读存储器(ROM)包含序列号等,具体格式如下图:

低八位用于CRC校验,中间48位是DS18B20唯一序列号,高八位是该系列产品系列号(固定为28h)。因此,根据每个DS18B20 唯一的序列号,可以实现一条总线上可以挂载多个DS18B20时,获取指定DS18B20的温度信息。

64 位配置存储器(SCRATCHP)由9个Byte组成,包含温度数据、配置信息等,具体格式如下图:

Byte[0:1]:温度值。也就是当我们发出一个测量温度的命令之后,还需要发送一个读内存的命令才能把温度值读取出来。

Byte[2:3]:TL是低温阈值设置,TH是高温阈值设置。当温度低于/超过阈值,就会报警。 TL、TH存储在EEPROM中,数据在掉电时不会丢失;

Byte4:配置寄存器。用于配置温度精度为9、10、11或12位。配置寄存器也存储在EEPROM中,数据在掉电时不会丢失;

Byte[5:7]:厂商预留;

Byte[8]:CRC校验码。

3.2 通信时序

3.2.1 初始化时序

主机要跟DS18B20通信,首先需要发出一个开始信号。 深黑色线表示由主机驱动信号,浅灰色线表示由DS18B20驱动信号。 最开始时引脚是高电平,想要开始传输信号必须要拉低至少480us,这是复位信号; 然后拉高释放总线,等待15~60us之后,如果GPIO上连有DS18B20芯片,它会拉低60~240us。如果主机在最后检查到60~240us的低脉冲,则表示DS18B20初始化成功。

3.2.2 写时序

写0:拉低至少60us(写周期为60-120us)即可;

写1:先拉低至少1us,然后拉高,整个写周期至少为60us即可。

3.2.3 读时序

主机先拉低至少1us,随后读取电平,如果为0,即读到的数据是0,如果为1,即可读到的数据是1。

注意:整个过程必须在15us内完成,15us后引脚都会被拉高。

3.3 常用命令

DS18B20中有两类命令:ROM命令、功能命令

列表如下:

4. 示例代码

4.1 驱动代码

#include <linux/module.h>
#include <linux/poll.h>#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>
#include <linux/gpio/consumer.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/of_irq.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/slab.h>
#include <linux/fcntl.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <asm/current.h>
#include <linux/delay.h>
#include <linux/version.h>static int major;
static struct class *ds18b20_class;
static struct gpio_desc *ds18b20_gpio_pin;// 延时函数
void ds18b20_delay_us(int us)
{// 定义变量记录时间u64 pre, last;
// 根据版本不同调用不同的函数
#if LINUX_VERSION_CODE < KERNEL_VERSION(5,0,0)pre = ktime_get_boot_ns(); while(1){last = ktime_get_boot_ns();if(last - pre >= us * 1000)break;}
#elsepre = ktime_get_boottime_ns();while(1){last = ktime_get_boottime_ns();if(last - pre >= us * 1000)break;}
#endif
}// 响应信号 
// 确认ds18b20设备的存在 先拉高后拉低 表示可以接收信号
int ds18b20_wait_for_ack(void)
{int timeout_count = 500;while(gpiod_get_value(ds18b20_gpio_pin) && timeout_count){udelay(1);timeout_count--;}if(!timeout_count){return -1;}timeout_count = 500;while(!gpiod_get_value(ds18b20_gpio_pin) && timeout_count){udelay(1);timeout_count--;}if(!timeout_count){return -1;}return 0;}// 复位信号
static int ds18b20_reset(void)
{int ret;// 拉低480us,这是复位信号gpiod_direction_output(ds18b20_gpio_pin, 0);ds18b20_delay_us(480);// 设置引脚为输入模式ret = gpiod_direction_input(ds18b20_gpio_pin);if(ds18b20_wait_for_ack())return -1;elsereturn 0;
}// 写字节
static void ds18b20_write_byte(unsigned char data)
{int i;for(i = 0; i < 8; i++){if(data & (1 << i)){// 输出1 gpiod_direction_output(ds18b20_gpio_pin, 0);ds18b20_delay_us(2);gpiod_direction_input(ds18b20_gpio_pin);ds18b20_delay_us(60);}else{// 输出0gpiod_direction_output(ds18b20_gpio_pin, 0);ds18b20_delay_us(60);gpiod_direction_input(ds18b20_gpio_pin);ds18b20_delay_us(2);}}}
// 读字节
unsigned char ds18b20_read_byte(void)
{unsigned char data = 0;int i;for(i = 0; i < 8; i++){gpiod_direction_output(ds18b20_gpio_pin, 0);ds18b20_delay_us(2);/* 设置为输入 */gpiod_direction_input(ds18b20_gpio_pin);/* 7us之后读引脚 */ds18b20_delay_us(7);if (gpiod_get_value(ds18b20_gpio_pin))data |= (1<<i);/* 读到数据后, 等待足够60us */ds18b20_delay_us(60);				}return data;
}static ssize_t ds18b20_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
{unsigned long flags;unsigned char tempL=0,tempH=0;unsigned int integer;unsigned char decimal1,decimal2,decimal;int err;if (size != 5)return -EINVAL;local_irq_save(flags);	  // 关中断if (ds18b20_reset()){gpiod_direction_output(ds18b20_gpio_pin, 1);local_irq_restore(flags); // 恢复中断printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);return -ENODEV;}ds18b20_write_byte(0xcc); //忽略rom指令,直接使用功能指令ds18b20_write_byte(0x44); //温度转换指令/* 不能省略! */gpiod_direction_output(ds18b20_gpio_pin, 1);local_irq_restore(flags); // 恢复中断//转换需要时间,延时1sset_current_state(TASK_INTERRUPTIBLE);schedule_timeout(HZ); local_irq_save(flags);	  // 关中断if (ds18b20_reset()){		gpiod_direction_output(ds18b20_gpio_pin, 1);local_irq_restore(flags); // 恢复中断printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);return -ENODEV;}ds18b20_write_byte(0xcc); //忽略rom指令,直接使用功能指令ds18b20_write_byte(0xbe); //读暂存器指令tempL = ds18b20_read_byte(); //读温度低8位tempH = ds18b20_read_byte(); //读温度高8位if (tempH > 0x7f)      							//最高位为1时温度是负{tempL    = ~tempL;         				    //补码转换,取反加一tempH    = ~tempH+1;      integer  = tempL/16+tempH*16;      			//整数部分decimal1 = (tempL&0x0f)*10/16; 			//小数第一位decimal2 = (tempL&0x0f)*100/16%10;			//小数第二位decimal  = decimal1*10+decimal2; 			//小数两位}else{integer  = tempL/16+tempH*16;      				//整数部分decimal1 = (tempL&0x0f)*10/16; 					//小数第一位decimal2 = (tempL&0x0f)*100/16%10;				//小数第二位decimal  = decimal1*10+decimal2; 				//小数两位}local_irq_restore(flags); // 恢复中断gpiod_direction_output(ds18b20_gpio_pin, 1);err = copy_to_user(buf, &integer, 4);err = copy_to_user(buf+4, &decimal, 1);return 5;}
static unsigned int ds18b20_poll (struct file *file, struct poll_table_struct *wait)
{return 0;
}static struct file_operations ds18b20_opes = {.owner = THIS_MODULE,.read = ds18b20_read,.poll = ds18b20_poll,
};int ds18b20_probe(struct platform_device *pdev)
{ds18b20_gpio_pin = gpiod_get(&pdev->dev, NULL, GPIOD_OUT_HIGH);device_create(ds18b20_class,  NULL, MKDEV(major, 0), NULL, "myds18b20");return 0;
}
int ds18b20_remove(struct platform_device *pdev)
{device_destroy(ds18b20_class, MKDEV(major, 0));gpiod_put(ds18b20_gpio_pin);return 0;
}static const struct of_device_id ask100_ds18b20[] = {{ .compatible = "100ask,ds18b20" },{},};static struct platform_driver ds18b20_dri = {.probe = ds18b20_probe,.remove = ds18b20_remove,.driver = {.name = "100ask_ds18b20",.of_match_table = ask100_ds18b20,},};static int __init ds18b20_init(void)
{int err;major =	register_chrdev(0, "ds18b20", &ds18b20_opes);ds18b20_class = class_create(THIS_MODULE, "ds18b20_class");err = platform_driver_register(&ds18b20_dri);return err;
}static void __exit ds18b20_exit(void)
{unregister_chrdev(major,"ds18b20");class_destroy(ds18b20_class);platform_driver_unregister(&ds18b20_dri);}module_init(ds18b20_init);
module_exit(ds18b20_exit);
MODULE_LICENSE("GPL");

4.2 应用代码


#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <poll.h>
#include <signal.h>
#include <unistd.h>/** ./ds18b20_test /dev/myds18b20**/
int main(int argc, char **argv)
{int fd;unsigned char data[5];unsigned int integer;unsigned char decimal;int i;/* 1. 判断参数 */if (argc != 2) {printf("Usage: %s <dev>\n", argv[0]);return -1;}/* 2. 打开文件 */
//	fd = open(argv[1], O_RDWR | O_NONBLOCK);fd = open(argv[1], O_RDWR);if (fd == -1){printf("can not open file %s\n", argv[1]);return -1;}while (1){if (read(fd, data, 5) == 5){integer = data[0] | (data[1]<<8) | (data[2]<<16) | (data[3]<<24);decimal = data[4];printf("get temprature: %d.%d\n", integer, decimal);}else {printf("get temprature: -1\n");}sleep(1);}close(fd);return 0;
}

4.3 Makefile


# 1. 使用不同的开发板内核时, 一定要修改KERN_DIR
# 2. KERN_DIR中的内核要事先配置、编译, 为了能编译内核, 要先设置下列环境变量:
# 2.1 ARCH,          比如: export ARCH=arm64
# 2.2 CROSS_COMPILE, 比如: export CROSS_COMPILE=aarch64-linux-gnu-
# 2.3 PATH,          比如: export PATH=$PATH:/home/book/100ask_roc-rk3399-pc/ToolChain-6.3.1/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-linux-gnu/bin 
# 注意: 不同的开发板不同的编译器上述3个环境变量不一定相同,
#       请参考各开发板的高级用户使用手册#KERN_DIR =  /home/book/100ask_stm32mp157_pro-sdk/Linux-5.4
KERN_DIR =  /home/book/100ask_imx6ull-sdk/Linux-4.9.88all:make -C $(KERN_DIR) M=`pwd` modules $(CROSS_COMPILE)gcc -o ds18b20_test ds18b20_test.c
clean:make -C $(KERN_DIR) M=`pwd` modules cleanrm -rf modules.order  ds18b20_test# 参考内核源码drivers/char/ipmi/Makefile
# 要想把a.c, b.c编译成ab.ko, 可以这样指定:
# ab-y := a.o b.o
# obj-m += ab.oobj-m += ds18b20_drv.o

4.4 实验效果

这篇关于Linux驱动开发基础(DS18B20温度模块)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1127575

相关文章

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Linux线程之线程的创建、属性、回收、退出、取消方式

《Linux线程之线程的创建、属性、回收、退出、取消方式》文章总结了线程管理核心知识:线程号唯一、创建方式、属性设置(如分离状态与栈大小)、回收机制(join/detach)、退出方法(返回/pthr... 目录1. 线程号2. 线程的创建3. 线程属性4. 线程的回收5. 线程的退出6. 线程的取消7.

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

linux解压缩 xxx.jar文件进行内部操作过程

《linux解压缩xxx.jar文件进行内部操作过程》:本文主要介绍linux解压缩xxx.jar文件进行内部操作,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、解压文件二、压缩文件总结一、解压文件1、把 xxx.jar 文件放在服务器上,并进入当前目录#

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys