windows C++ 并行编程-C++ AMP 图形(二)

2024-09-01 11:52

本文主要是介绍windows C++ 并行编程-C++ AMP 图形(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文中的"显存"还没有找到合适的中文翻译,它的英文名称是texture, 在应用开发者来看,texture是一个名词,在物理上指的是 GPU显存中一段连续的空间。

读取显存对象

可以使用 texture::operator[]、texture::operator() 运算符或 texture::get 方法从 texture 对象中读取。 两个运算符将返回一个值,而不是引用。 因此,你不能使用 texture 写入 texture::operator\[\] 对象。

void readTexture() {std::vector<int_2> src;for (int i = 0; i <16 *32; i++) {int_2 i2(i, i);src.push_back(i2);}std::vector<int_2> dst(16* 32);array_view<int_2, 2> arr(16, 32, dst);arr.discard_data();const texture<int_2, 2> tex9(16, 32, src.begin(), src.end());parallel_for_each(tex9.extent, [=, &tex9] (index<2> idx) restrict(amp) { // Use the subscript operator.arr[idx].x += tex9[idx].x; // Use the function () operator.arr[idx].x += tex9(idx).x; // Use the get method.arr[idx].y += tex9.get(idx).y; // Use the function () operator.arr[idx].y += tex9(idx[0], idx[1]).y;});arr.synchronize();
}

 下面的代码示例演示如何在短矢量中存储显存通道,然后访问作为短矢量属性的各个标量元素。

void UseBitsPerScalarElement() { // Create the image data. // Each unsigned int (32-bit) represents four 8-bit scalar elements(r,g,b,a values).const int image_height = 16;const int image_width = 16;std::vector<unsigned int> image(image_height* image_width);extent<2> image_extent(image_height, image_width);// By using uint_4 and 8 bits per channel, each 8-bit channel in the data source is // stored in one 32-bit component of a uint_4.texture<uint_4, 2> image_texture(image_extent, image.data(), image_extent.size()* 4U,  8U);// Use can access the RGBA values of the source data by using swizzling expressions of the uint_4.parallel_for_each(image_extent,[&image_texture](index<2> idx) restrict(amp){ // 4 bytes are automatically extracted when reading.uint_4 color = image_texture[idx];unsigned int r = color.r;unsigned int g = color.g;unsigned int b = color.b;unsigned int a = color.a;});
}

 下表列出了每种短矢量类型的每通道有效位数。

 写入显存对象

使用 texture::set 方法可写入 texture 对象。 显存对象可以是只读或读/写属性。 显存对象若要可读写,必须满足以下条件:

T 只有一个标量组件。 (不允许使用短矢量。)

T 不是 double、norm 或 unorm。

texture::bits_per_scalar_element 属性为 32。

如果不符合这三个条件,则 texture 对象为只读对象。 编译期间将检查前两个条件。 如果有代码尝试写入 readonly 显存对象,将产生编译错误。 texture::bits_per_scalar_element 条件在运行时进行检查,如果尝试写入只读的 texture 对象,则运行时将产生 unsupported_feature 异常。

下面的代码示例向一个显存对象写入了多个值。

void writeTexture() {texture<int, 1> tex1(16);parallel_for_each(tex1.extent, [&tex1] (index<1> idx) restrict(amp) {tex1.set(idx, 0);});
}
 复制显存对象

如下面的代码示例所示,可以使用 copy 函数或 copy_async 函数在显存对象之间进行复制。

void copyHostArrayToTexture() { // Copy from source array to texture object by using the copy function.float floatSource[1024* 2];for (int i = 0; i <1024* 2; i++) {floatSource[i] = (float)i;}texture<float_2, 1> floatTexture(1024);copy(floatSource, (unsigned int)sizeof(floatSource), floatTexture);// Copy from source array to texture object by using the copy function.char charSource[16* 16];for (int i = 0; i <16* 16; i++) {charSource[i] = (char)i;}texture<int, 2> charTexture(16, 16, 8U);copy(charSource, (unsigned int)sizeof(charSource), charTexture);// Copy from texture object to source array by using the copy function.copy(charTexture, charSource, (unsigned int)sizeof(charSource));
}

你还可以使用 texture::copy_to 方法从一个纹理复制到另一个纹理。 这两个纹理可以位于不同的 accelerator_view 上。 当复制到 writeonly_texture_view 对象时,数据将复制到基础 texture 对象。 源和目标 texture 对象上的每标量元素位数和范围必须相同。 如果不符合这些需求,运行时将引发异常。

显存视图类

C++ AMP 介绍了 Visual Studio 2013 中的 texture_view 类。 显存视图支持与 texture 类相同的纹素类型和秩,但是与显存不同,它们允许访问其他硬件功能,如显存采样和 mipmap。 显存视图支持对基础显存数据进行只读、只写和读/写访问。

  • 只读访问由 texture_view<const T, N> 模板专用化提供,支持具有 1 个、2 个或 4 个组件的元素、显存采样以及动态访问在实例化视图时确定的一系列 mipmap 级别;
  • 写入访问由非专用模板类 texture_view<T, N> 提供,支持具有 2 个或 4 个组件的元素,并且可以访问在实例化视图时确定的一个 mipmap 级别。 它不支持采样;
  • 读写访问由非专用模板类 texture_view<T, N> 提供,与显存一样,支持仅具有 1 个组件的元素;视图可以访问在实例化视图时确定的一个 mipmap 级别。 它不支持采样;

显存视图类似于数组视图,但是不提供 array_view 类通过 array 类提供的自动数据管理和移动功能。 texture_view 只能在基础显存数据所在的快捷键视图中进行访问。

这篇关于windows C++ 并行编程-C++ AMP 图形(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126863

相关文章

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

windows系统下shutdown重启关机命令超详细教程

《windows系统下shutdown重启关机命令超详细教程》shutdown命令是一个强大的工具,允许你通过命令行快速完成关机、重启或注销操作,本文将为你详细解析shutdown命令的使用方法,并提... 目录一、shutdown 命令简介二、shutdown 命令的基本用法三、远程关机与重启四、实际应用

Windows自动化Python pyautogui RPA操作实现

《Windows自动化PythonpyautoguiRPA操作实现》本文详细介绍了使用Python的pyautogui库进行Windows自动化操作的实现方法,文中通过示例代码介绍的非常详细,对大... 目录依赖包睡眠:鼠标事件:杀死进程:获取所有窗口的名称:显示窗口:根据图片找元素:输入文字:打开应用:依

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

javafx 如何将项目打包为 Windows 的可执行文件exe

《javafx如何将项目打包为Windows的可执行文件exe》文章介绍了三种将JavaFX项目打包为.exe文件的方法:方法1使用jpackage(适用于JDK14及以上版本),方法2使用La... 目录方法 1:使用 jpackage(适用于 JDK 14 及更高版本)方法 2:使用 Launch4j(

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo

windows端python版本管理工具pyenv-win安装使用

《windows端python版本管理工具pyenv-win安装使用》:本文主要介绍如何通过git方式下载和配置pyenv-win,包括下载、克隆仓库、配置环境变量等步骤,同时还详细介绍了如何使用... 目录pyenv-win 下载配置环境变量使用 pyenv-win 管理 python 版本一、安装 和

Python使用pysmb库访问Windows共享文件夹的详细教程

《Python使用pysmb库访问Windows共享文件夹的详细教程》本教程旨在帮助您使用pysmb库,通过SMB(ServerMessageBlock)协议,轻松连接到Windows共享文件夹,并列... 目录前置条件步骤一:导入必要的模块步骤二:配置连接参数步骤三:实例化SMB连接对象并尝试连接步骤四:

C#反射编程之GetConstructor()方法解读

《C#反射编程之GetConstructor()方法解读》C#中Type类的GetConstructor()方法用于获取指定类型的构造函数,该方法有多个重载版本,可以根据不同的参数获取不同特性的构造函... 目录C# GetConstructor()方法有4个重载以GetConstructor(Type[]

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function