CohereForAI更新企业级开源模型 c4ai-command-r-08-2024和c4ai-command-r-plus-08-2024

2024-09-01 08:36

本文主要是介绍CohereForAI更新企业级开源模型 c4ai-command-r-08-2024和c4ai-command-r-plus-08-2024,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

C4AI Command R 08-2024 是一个 350 亿参数高性能生成模型的研究版本。 Command R 08-2024 是一个大型语言模型,采用开放式权重,针对推理、总结和问题解答等各种用例进行了优化。 Command R 08-2024 具备多语言生成功能,曾在 23 种语言上进行过训练,并在 10 种语言上进行过评估,还具备高性能的 RAG 功能。

  • Point of Contact: Cohere For AI: cohere.for.ai
  • License: CC-BY-NC, requires also adhering to C4AI’s Acceptable Use Policy
  • Model: c4ai-command-r-08-2024
  • Model Size: 35 billion parameters
  • Context length: 128K

在这里插入图片描述

C4AI Command R+ 08-2024 是一个 1040 亿参数模型的开放权重研究版本,具有非常先进的功能,包括检索增强生成(RAG)和工具使用,可自动完成复杂的任务。 该模型生成中的工具使用可实现多步骤工具使用,从而使模型能够在多个步骤中结合多个工具来完成困难的任务。 C4AI Command R+ 08-2024 是一个多语种模型,使用 23 种语言进行训练,并用 10 种语言进行评估。 Command R+ 08-2024 针对推理、总结和问题解答等各种使用情况进行了优化。

  • Point of Contact: Cohere For AI: cohere.for.ai
  • License: CC-BY-NC, requires also adhering to C4AI’s Acceptable Use Policy
  • Model: c4ai-command-r-plus-08-2024
  • Model Size: 104 billion parameters
  • Context length: 128K

代码

# pip install 'transformers>=4.39.1'
from transformers import AutoTokenizer, AutoModelForCausalLMmodel_id = "CohereForAI/c4ai-command-r-08-2024"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)# Format message with the command-r-08-2024 chat template
messages = [{"role": "user", "content": "Hello, how are you?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>gen_tokens = model.generate(input_ids, max_new_tokens=100, do_sample=True, temperature=0.3,
)gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)
# pip install 'transformers>=4.39.1'
from transformers import AutoTokenizer, AutoModelForCausalLMmodel_id = "CohereForAI/c4ai-command-r-plus-08-2024"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)# Format message with the command-r-plus-08-2024 chat template
messages = [{"role": "user", "content": "Hello, how are you?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>gen_tokens = model.generate(input_ids, max_new_tokens=100, do_sample=True, temperature=0.3,)gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)

模型详细信息

输入: 模型仅输入文本。

输出: 模型仅生成文本。

模型架构: 这是一个自动回归语言模型,使用优化的转换器架构。 经过预训练后,该模型使用监督微调(SFT)和偏好训练,使模型行为与人类对有用性和安全性的偏好保持一致。 我们使用分组查询关注(GQA)来提高推理速度。

涵盖语言: 该模型已在 23 种语言(英语、法语、西班牙语、意大利语、德语、葡萄牙语、日语、韩语、阿拉伯语、简体中文、俄语、波兰语、土耳其语、越南语、荷兰语、捷克语、印尼语、乌克兰语、罗马尼亚语、希腊语、印地语、希伯来语和波斯语)上进行了训练,并在 10 种语言(英语、法语、西班牙语、意大利语、德语、葡萄牙语、日语、韩语、阿拉伯语和简体中文)上进行了评估。

接地生成和 RAG 功能:R08-2024 指挥系统经过专门培训,具备接地生成功能。 这意味着它可以根据提供的文件片段列表生成响应,并在响应中包含标明信息来源的基础跨度(引文)。 这种行为是通过监督微调和偏好微调混合使用特定的提示模板训练到模型中的。 偏离该提示模板可能会降低性能,但我们鼓励尝试。

R 08-2024 命令的底层生成行为以对话为输入(可选择用户提供的系统前言,说明任务、上下文和所需的输出风格),以及检索到的文档片段列表。 文档片段应该是片段,而不是长文档,通常每个片段大约 100-400 字。 文档片段由键值对组成。

在默认情况下,Command R 08-2024 将通过以下方式生成接地响应:首先预测哪些文档是相关的,然后预测它将引用哪些文档,最后生成答案。 最后,它会在答案中插入接地跨度。 请看下面的示例。 这就是所谓的精确接地生成。

该模型在训练时还采用了其他一些答题模式,可通过更改提示来选择。 标记符号生成器支持快速引用模式,该模式将直接生成包含接地跨度的答案,而无需先将答案全文写出。 这样做会牺牲一些接地的准确性,而有利于生成更少的标记。

代码功能:Command R 08-2024 经过优化,可通过请求代码片段、代码解释或代码重写与您的代码进行交互。 对于纯粹的代码自动补全,它的性能可能不会很好。 为了获得更好的性能,我们还建议对代码生成相关指令使用低温(甚至是贪婪解码)。

这篇关于CohereForAI更新企业级开源模型 c4ai-command-r-08-2024和c4ai-command-r-plus-08-2024的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126449

相关文章

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Linux Mint Xia 22.1重磅发布: 重要更新一览

《LinuxMintXia22.1重磅发布:重要更新一览》Beta版LinuxMint“Xia”22.1发布,新版本基于Ubuntu24.04,内核版本为Linux6.8,这... linux Mint 22.1「Xia」正式发布啦!这次更新带来了诸多优化和改进,进一步巩固了 Mint 在 Linux 桌面