CohereForAI更新企业级开源模型 c4ai-command-r-08-2024和c4ai-command-r-plus-08-2024

2024-09-01 08:36

本文主要是介绍CohereForAI更新企业级开源模型 c4ai-command-r-08-2024和c4ai-command-r-plus-08-2024,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

C4AI Command R 08-2024 是一个 350 亿参数高性能生成模型的研究版本。 Command R 08-2024 是一个大型语言模型,采用开放式权重,针对推理、总结和问题解答等各种用例进行了优化。 Command R 08-2024 具备多语言生成功能,曾在 23 种语言上进行过训练,并在 10 种语言上进行过评估,还具备高性能的 RAG 功能。

  • Point of Contact: Cohere For AI: cohere.for.ai
  • License: CC-BY-NC, requires also adhering to C4AI’s Acceptable Use Policy
  • Model: c4ai-command-r-08-2024
  • Model Size: 35 billion parameters
  • Context length: 128K

在这里插入图片描述

C4AI Command R+ 08-2024 是一个 1040 亿参数模型的开放权重研究版本,具有非常先进的功能,包括检索增强生成(RAG)和工具使用,可自动完成复杂的任务。 该模型生成中的工具使用可实现多步骤工具使用,从而使模型能够在多个步骤中结合多个工具来完成困难的任务。 C4AI Command R+ 08-2024 是一个多语种模型,使用 23 种语言进行训练,并用 10 种语言进行评估。 Command R+ 08-2024 针对推理、总结和问题解答等各种使用情况进行了优化。

  • Point of Contact: Cohere For AI: cohere.for.ai
  • License: CC-BY-NC, requires also adhering to C4AI’s Acceptable Use Policy
  • Model: c4ai-command-r-plus-08-2024
  • Model Size: 104 billion parameters
  • Context length: 128K

代码

# pip install 'transformers>=4.39.1'
from transformers import AutoTokenizer, AutoModelForCausalLMmodel_id = "CohereForAI/c4ai-command-r-08-2024"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)# Format message with the command-r-08-2024 chat template
messages = [{"role": "user", "content": "Hello, how are you?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>gen_tokens = model.generate(input_ids, max_new_tokens=100, do_sample=True, temperature=0.3,
)gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)
# pip install 'transformers>=4.39.1'
from transformers import AutoTokenizer, AutoModelForCausalLMmodel_id = "CohereForAI/c4ai-command-r-plus-08-2024"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)# Format message with the command-r-plus-08-2024 chat template
messages = [{"role": "user", "content": "Hello, how are you?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>gen_tokens = model.generate(input_ids, max_new_tokens=100, do_sample=True, temperature=0.3,)gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)

模型详细信息

输入: 模型仅输入文本。

输出: 模型仅生成文本。

模型架构: 这是一个自动回归语言模型,使用优化的转换器架构。 经过预训练后,该模型使用监督微调(SFT)和偏好训练,使模型行为与人类对有用性和安全性的偏好保持一致。 我们使用分组查询关注(GQA)来提高推理速度。

涵盖语言: 该模型已在 23 种语言(英语、法语、西班牙语、意大利语、德语、葡萄牙语、日语、韩语、阿拉伯语、简体中文、俄语、波兰语、土耳其语、越南语、荷兰语、捷克语、印尼语、乌克兰语、罗马尼亚语、希腊语、印地语、希伯来语和波斯语)上进行了训练,并在 10 种语言(英语、法语、西班牙语、意大利语、德语、葡萄牙语、日语、韩语、阿拉伯语和简体中文)上进行了评估。

接地生成和 RAG 功能:R08-2024 指挥系统经过专门培训,具备接地生成功能。 这意味着它可以根据提供的文件片段列表生成响应,并在响应中包含标明信息来源的基础跨度(引文)。 这种行为是通过监督微调和偏好微调混合使用特定的提示模板训练到模型中的。 偏离该提示模板可能会降低性能,但我们鼓励尝试。

R 08-2024 命令的底层生成行为以对话为输入(可选择用户提供的系统前言,说明任务、上下文和所需的输出风格),以及检索到的文档片段列表。 文档片段应该是片段,而不是长文档,通常每个片段大约 100-400 字。 文档片段由键值对组成。

在默认情况下,Command R 08-2024 将通过以下方式生成接地响应:首先预测哪些文档是相关的,然后预测它将引用哪些文档,最后生成答案。 最后,它会在答案中插入接地跨度。 请看下面的示例。 这就是所谓的精确接地生成。

该模型在训练时还采用了其他一些答题模式,可通过更改提示来选择。 标记符号生成器支持快速引用模式,该模式将直接生成包含接地跨度的答案,而无需先将答案全文写出。 这样做会牺牲一些接地的准确性,而有利于生成更少的标记。

代码功能:Command R 08-2024 经过优化,可通过请求代码片段、代码解释或代码重写与您的代码进行交互。 对于纯粹的代码自动补全,它的性能可能不会很好。 为了获得更好的性能,我们还建议对代码生成相关指令使用低温(甚至是贪婪解码)。

这篇关于CohereForAI更新企业级开源模型 c4ai-command-r-08-2024和c4ai-command-r-plus-08-2024的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126449

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Linux Mint Xia 22.1重磅发布: 重要更新一览

《LinuxMintXia22.1重磅发布:重要更新一览》Beta版LinuxMint“Xia”22.1发布,新版本基于Ubuntu24.04,内核版本为Linux6.8,这... linux Mint 22.1「Xia」正式发布啦!这次更新带来了诸多优化和改进,进一步巩固了 Mint 在 Linux 桌面

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题

《解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题》本文主要讲述了在使用MyBatis和MyBatis-Plus时遇到的绑定异常... 目录myBATis-plus-boot-starpythonter与mybatis-spring-b

Ubuntu 24.04 LTS怎么关闭 Ubuntu Pro 更新提示弹窗?

《Ubuntu24.04LTS怎么关闭UbuntuPro更新提示弹窗?》Ubuntu每次开机都会弹窗提示安全更新,设置里最多只能取消自动下载,自动更新,但无法做到直接让自动更新的弹窗不出现,... 如果你正在使用 Ubuntu 24.04 LTS,可能会注意到——在使用「软件更新器」或运行 APT 命令时,

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

Spring Boot 中整合 MyBatis-Plus详细步骤(最新推荐)

《SpringBoot中整合MyBatis-Plus详细步骤(最新推荐)》本文详细介绍了如何在SpringBoot项目中整合MyBatis-Plus,包括整合步骤、基本CRUD操作、分页查询、批... 目录一、整合步骤1. 创建 Spring Boot 项目2. 配置项目依赖3. 配置数据源4. 创建实体类

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行