CohereForAI更新企业级开源模型 c4ai-command-r-08-2024和c4ai-command-r-plus-08-2024

2024-09-01 08:36

本文主要是介绍CohereForAI更新企业级开源模型 c4ai-command-r-08-2024和c4ai-command-r-plus-08-2024,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

C4AI Command R 08-2024 是一个 350 亿参数高性能生成模型的研究版本。 Command R 08-2024 是一个大型语言模型,采用开放式权重,针对推理、总结和问题解答等各种用例进行了优化。 Command R 08-2024 具备多语言生成功能,曾在 23 种语言上进行过训练,并在 10 种语言上进行过评估,还具备高性能的 RAG 功能。

  • Point of Contact: Cohere For AI: cohere.for.ai
  • License: CC-BY-NC, requires also adhering to C4AI’s Acceptable Use Policy
  • Model: c4ai-command-r-08-2024
  • Model Size: 35 billion parameters
  • Context length: 128K

在这里插入图片描述

C4AI Command R+ 08-2024 是一个 1040 亿参数模型的开放权重研究版本,具有非常先进的功能,包括检索增强生成(RAG)和工具使用,可自动完成复杂的任务。 该模型生成中的工具使用可实现多步骤工具使用,从而使模型能够在多个步骤中结合多个工具来完成困难的任务。 C4AI Command R+ 08-2024 是一个多语种模型,使用 23 种语言进行训练,并用 10 种语言进行评估。 Command R+ 08-2024 针对推理、总结和问题解答等各种使用情况进行了优化。

  • Point of Contact: Cohere For AI: cohere.for.ai
  • License: CC-BY-NC, requires also adhering to C4AI’s Acceptable Use Policy
  • Model: c4ai-command-r-plus-08-2024
  • Model Size: 104 billion parameters
  • Context length: 128K

代码

# pip install 'transformers>=4.39.1'
from transformers import AutoTokenizer, AutoModelForCausalLMmodel_id = "CohereForAI/c4ai-command-r-08-2024"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)# Format message with the command-r-08-2024 chat template
messages = [{"role": "user", "content": "Hello, how are you?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>gen_tokens = model.generate(input_ids, max_new_tokens=100, do_sample=True, temperature=0.3,
)gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)
# pip install 'transformers>=4.39.1'
from transformers import AutoTokenizer, AutoModelForCausalLMmodel_id = "CohereForAI/c4ai-command-r-plus-08-2024"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)# Format message with the command-r-plus-08-2024 chat template
messages = [{"role": "user", "content": "Hello, how are you?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>gen_tokens = model.generate(input_ids, max_new_tokens=100, do_sample=True, temperature=0.3,)gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)

模型详细信息

输入: 模型仅输入文本。

输出: 模型仅生成文本。

模型架构: 这是一个自动回归语言模型,使用优化的转换器架构。 经过预训练后,该模型使用监督微调(SFT)和偏好训练,使模型行为与人类对有用性和安全性的偏好保持一致。 我们使用分组查询关注(GQA)来提高推理速度。

涵盖语言: 该模型已在 23 种语言(英语、法语、西班牙语、意大利语、德语、葡萄牙语、日语、韩语、阿拉伯语、简体中文、俄语、波兰语、土耳其语、越南语、荷兰语、捷克语、印尼语、乌克兰语、罗马尼亚语、希腊语、印地语、希伯来语和波斯语)上进行了训练,并在 10 种语言(英语、法语、西班牙语、意大利语、德语、葡萄牙语、日语、韩语、阿拉伯语和简体中文)上进行了评估。

接地生成和 RAG 功能:R08-2024 指挥系统经过专门培训,具备接地生成功能。 这意味着它可以根据提供的文件片段列表生成响应,并在响应中包含标明信息来源的基础跨度(引文)。 这种行为是通过监督微调和偏好微调混合使用特定的提示模板训练到模型中的。 偏离该提示模板可能会降低性能,但我们鼓励尝试。

R 08-2024 命令的底层生成行为以对话为输入(可选择用户提供的系统前言,说明任务、上下文和所需的输出风格),以及检索到的文档片段列表。 文档片段应该是片段,而不是长文档,通常每个片段大约 100-400 字。 文档片段由键值对组成。

在默认情况下,Command R 08-2024 将通过以下方式生成接地响应:首先预测哪些文档是相关的,然后预测它将引用哪些文档,最后生成答案。 最后,它会在答案中插入接地跨度。 请看下面的示例。 这就是所谓的精确接地生成。

该模型在训练时还采用了其他一些答题模式,可通过更改提示来选择。 标记符号生成器支持快速引用模式,该模式将直接生成包含接地跨度的答案,而无需先将答案全文写出。 这样做会牺牲一些接地的准确性,而有利于生成更少的标记。

代码功能:Command R 08-2024 经过优化,可通过请求代码片段、代码解释或代码重写与您的代码进行交互。 对于纯粹的代码自动补全,它的性能可能不会很好。 为了获得更好的性能,我们还建议对代码生成相关指令使用低温(甚至是贪婪解码)。

这篇关于CohereForAI更新企业级开源模型 c4ai-command-r-08-2024和c4ai-command-r-plus-08-2024的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126449

相关文章

mybatis-plus如何根据任意字段saveOrUpdateBatch

《mybatis-plus如何根据任意字段saveOrUpdateBatch》MyBatisPlussaveOrUpdateBatch默认按主键判断操作类型,若需按其他唯一字段(如agentId、pe... 目录使用场景方法源码方法改造首先在service层定义接口service层接口实现总结使用场景my

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

MySQL 数据库表操作完全指南:创建、读取、更新与删除实战

《MySQL数据库表操作完全指南:创建、读取、更新与删除实战》本文系统讲解MySQL表的增删查改(CURD)操作,涵盖创建、更新、查询、删除及插入查询结果,也是贯穿各类项目开发全流程的基础数据交互原... 目录mysql系列前言一、Create(创建)并插入数据1.1 单行数据 + 全列插入1.2 多行数据

linux安装、更新、卸载anaconda实践

《linux安装、更新、卸载anaconda实践》Anaconda是基于conda的科学计算环境,集成1400+包及依赖,安装需下载脚本、接受协议、设置路径、配置环境变量,更新与卸载通过conda命令... 目录随意找一个目录下载安装脚本检查许可证协议,ENTER就可以安装完毕之后激活anaconda安装更

Mybatis-Plus 3.5.12 分页拦截器消失的问题及快速解决方法

《Mybatis-Plus3.5.12分页拦截器消失的问题及快速解决方法》作为Java开发者,我们都爱用Mybatis-Plus简化CRUD操作,尤其是它的分页功能,几行代码就能搞定复杂的分页查询... 目录一、问题场景:分页拦截器突然 “失踪”二、问题根源:依赖拆分惹的祸三、解决办法:添加扩展依赖四、分页

Nginx进行平滑升级的实战指南(不中断服务版本更新)

《Nginx进行平滑升级的实战指南(不中断服务版本更新)》Nginx的平滑升级(也称为热升级)是一种在不停止服务的情况下更新Nginx版本或添加模块的方法,这种升级方式确保了服务的高可用性,避免了因升... 目录一.下载并编译新版Nginx1.下载解压2.编译二.替换可执行文件,并平滑升级1.替换可执行文件

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略

mybatis-plus QueryWrapper中or,and的使用及说明

《mybatis-plusQueryWrapper中or,and的使用及说明》使用MyBatisPlusQueryWrapper时,因同时添加角色权限固定条件和多字段模糊查询导致数据异常展示,排查发... 目录QueryWrapper中or,and使用列表中还要同时模糊查询多个字段经过排查这就导致只要whe