Spark02:RDD的实现

2024-09-01 08:18
文章标签 实现 rdd spark02

本文主要是介绍Spark02:RDD的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

公众号:数据挖掘与机器学习笔记

1.作业调度

在执行转换操作的RDD时,调度器会根据RDD的“血统”来构建若干由stage组成的有向无环图(DAG),每个stage阶段包含若干个连续窄依赖转换。调度器按照DAG顺序进行计算得到最终的RDD。

调度器向各节点分配任务采用延时调度机制并根据数据存储位置(数据本地性)来确定。如果一个任务需要处理的某个分区刚好存储在相应节点的内存中,则该任务会分配给该节点;如果在内存中不包含该分区,调度器会找到包含该RDD的较佳位置,并把任务分配给所在节点。

image-20200826103555542

对于宽依赖而言,Spark会将中间结果物化到父分区的节点上,这样可以简化数据的故障恢复过程。如上图所示,stage是根据宽依赖来划分Stage,对各调度阶段内部的窄依赖则前后连接构成流水线。图中,A和B是宽依赖,所以A划分为一个stage,F与G之间也是宽依赖,所以C、D、E和F划分为一个stage。最后所有的RDD组成一个stage。在本例中,Stage1的输出已经存在内存中,所以直接执行Stage2,然后执行Stage3。

对于执行失败的任务,只要它对应调度阶段父类信息仍然可用,该任务会分散到其它节点重新执行。如果某些调度阶段不可用(例如,因为shuffle在map节点丢失了),则重新提交相应的任务,并以并行方式计算丢失的分区。在作业中,如果某个任务执行缓慢(Straggler),系统会在其他节点上执行该任务的副本,并取最先得到的结果作为最终的结果。

2.内存管理

Spark提供了2种持久化RDD的存储策略:

持久化策略
未序列化Java对象存在内存中性能最优,可以直接访问在java虚拟机内存里的对象
序列化的数据存于内存中空间有限的情况下,可以让用户采用比java对象更有效的组织方式,但降低了性能
存于磁盘用于RDD太大的情形,每次重新计算该RDD会带来额外的资源开销(如I/O)

内存管理使用LRU回收算法,当计算得到一个新的RDD分区,但没有足够空间,系统会从最近最少使用的RDD回收其一个分区的空间。除非该RDD是新分区对应的RDD,这种情况下Spark会将旧的分区继续保留在内存中,防止同一个RDD的分区被循环调入/调出。

3. 检查点(Checkpoint)支持

对于很长的"血统"的RDD来说,如果需要回复错误RDD,则需要很长时间,因此需要通过检查点操作将RDD保存到外部存储中。对于包含宽依赖的长“血统”,当集群中某个节点出现故障时,会使得从各个父RDD计算出的数据丢失,造成重新计算,因此,设置检查点就显得有必要。对于窄依赖的RDD,对其进行检查点操作就不是必须的。因为,如果一个节点发生故障,RDD在该节点中丢失的分区数据可以通过并行的方式从其它节点中计算出来,成本只是复制RDD的很小部分。

4.多用户管理

RDD模型将计算分解为多个相互独立的细粒度任务,使得它在多用户集群能够支持多种资源共享算法。每个RDD应用可以在执行过程中动态调整访问资源。

  • 在每个应用程序中,Spark运行多线程同时提交作业,并通过一种等级公平调度器来实现多个作业对集群资源的共享。
  • Spark的公平调度也使用延迟调度,通过轮询每台机器的数据,在保持公平的情况下给予本地作业高的本地性。Spark支持多级本地化访问策略(本地化),包括内存、磁盘和机架。
  • 由于任务相互独立,调度器还支持取消作业来为高优先级的作业腾出资源。
  • Spark可以使用Mesos来实现细粒度的资源共享,使得Spark应用能相互之间或在不同的计算框架之间实现资源的动态共享。
  • Spark使用Sparrow系统扩展支持分布式调度,该调度允许多个Spark应用以去中心化的方式在同一集群上排队工作,同时提供本地性、低延迟和公平性。

参考

[1]《图解Spark:核心技术与案里实战》
在这里插入图片描述

这篇关于Spark02:RDD的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126407

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja