深入理解红黑树:在C++中实现插入、删除和查找操作

2024-09-01 07:44

本文主要是介绍深入理解红黑树:在C++中实现插入、删除和查找操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深入理解红黑树:在C++中实现插入、删除和查找操作

红黑树是一种自平衡二叉搜索树,广泛应用于各种算法和系统中。它通过颜色属性和旋转操作来保持树的平衡,从而保证插入、删除和查找操作的时间复杂度为O(log n)。本文将详细介绍如何在C++中实现一个红黑树,并提供插入、删除和查找操作的具体实现。

红黑树的基本性质

红黑树具有以下性质:

  1. 每个节点要么是红色,要么是黑色。
  2. 根节点是黑色。
  3. 每个叶子节点(NIL节点)是黑色。
  4. 如果一个节点是红色的,则它的两个子节点都是黑色的(即没有两个连续的红色节点)。
  5. 对每个节点,从该节点到其所有后代叶子节点的路径上,包含相同数量的黑色节点。

这些性质确保了红黑树的平衡性,使得树的最长路径不会超过最短路径的两倍。

红黑树节点定义

首先,我们定义一个红黑树节点类,用于表示红黑树中的每个节点。

enum Color { RED, BLACK };template <typename T>
class Node {
public:T data;Color color;Node* left;Node* right;Node* parent;Node(T data) : data(data), color(RED), left(nullptr), right(nullptr), parent(nullptr) {}
};
红黑树类定义

接下来,我们定义一个红黑树类,包含红黑树的基本结构和成员函数。

template <typename T>
class RedBlackTree {
private:Node<T>* root;void rotateLeft(Node<T>*& root, Node<T>*& pt);void rotateRight(Node<T>*& root, Node<T>*& pt);void fixInsert(Node<T>*& root, Node<T>*& pt);void fixDelete(Node<T>*& root, Node<T>*& pt);void inorderHelper(Node<T>* root);Node<T>* BSTInsert(Node<T>* root, Node<T>* pt);Node<T>* minValueNode(Node<T>* node);Node<T>* deleteBST(Node<T>* root, T data);public:RedBlackTree() : root(nullptr) {}void insert(const T& data);void deleteNode(const T& data);bool search(const T& data);void inorder();
};
插入操作

插入操作包括标准的二叉搜索树插入和红黑树的修复操作。首先,我们进行标准的BST插入,然后通过旋转和重新着色来修复红黑树的性质。

template <typename T>
void RedBlackTree<T>::insert(const T& data) {Node<T>* pt = new Node<T>(data);root = BSTInsert(root, pt);fixInsert(root, pt);
}template <typename T>
Node<T>* RedBlackTree<T>::BSTInsert(Node<T>* root, Node<T>* pt) {if (root == nullptr) return pt;if (pt->data < root->data) {root->left = BSTInsert(root->left, pt);root->left->parent = root;} else if (pt->data > root->data) {root->right = BSTInsert(root->right, pt);root->right->parent = root;}return root;
}template <typename T>
void RedBlackTree<T>::fixInsert(Node<T>*& root, Node<T>*& pt) {Node<T>* parent_pt = nullptr;Node<T>* grand_parent_pt = nullptr;while ((pt != root) && (pt->color != BLACK) && (pt->parent->color == RED)) {parent_pt = pt->parent;grand_parent_pt = pt->parent->parent;if (parent_pt == grand_parent_pt->left) {Node<T>* uncle_pt = grand_parent_pt->right;if (uncle_pt != nullptr && uncle_pt->color == RED) {grand_parent_pt->color = RED;parent_pt->color = BLACK;uncle_pt->color = BLACK;pt = grand_parent_pt;} else {if (pt == parent_pt->right) {rotateLeft(root, parent_pt);pt = parent_pt;parent_pt = pt->parent;}rotateRight(root, grand_parent_pt);std::swap(parent_pt->color, grand_parent_pt->color);pt = parent_pt;}} else {Node<T>* uncle_pt = grand_parent_pt->left;if (uncle_pt != nullptr && uncle_pt->color == RED) {grand_parent_pt->color = RED;parent_pt->color = BLACK;uncle_pt->color = BLACK;pt = grand_parent_pt;} else {if (pt == parent_pt->left) {rotateRight(root, parent_pt);pt = parent_pt;parent_pt = pt->parent;}rotateLeft(root, grand_parent_pt);std::swap(parent_pt->color, grand_parent_pt->color);pt = parent_pt;}}}root->color = BLACK;
}
删除操作

删除操作相对复杂,需要考虑多种情况。首先,我们进行标准的BST删除,然后通过旋转和重新着色来修复红黑树的性质。

template <typename T>
void RedBlackTree<T>::deleteNode(const T& data) {Node<T>* node = deleteBST(root, data);if (node != nullptr) {fixDelete(root, node);}
}template <typename T>
Node<T>* RedBlackTree<T>::deleteBST(Node<T>* root, T data) {if (root == nullptr) return root;if (data < root->data) {return deleteBST(root->left, data);} else if (data > root->data) {return deleteBST(root->right, data);}if (root->left == nullptr || root->right == nullptr) {return root;}Node<T>* temp = minValueNode(root->right);root->data = temp->data;return deleteBST(root->right, temp->data);
}template <typename T>
void RedBlackTree<T>::fixDelete(Node<T>*& root, Node<T>*& pt) {Node<T>* sibling;while (pt != root && pt->color == BLACK) {if (pt == pt->parent->left) {sibling = pt->parent->right;if (sibling->color == RED) {sibling->color = BLACK;pt->parent->color = RED;rotateLeft(root, pt->parent);sibling = pt->parent->right;}if (sibling->left->color == BLACK && sibling->right->color == BLACK) {sibling->color = RED;pt = pt->parent;} else {if (sibling->right->color == BLACK) {sibling->left->color = BLACK;sibling->color = RED;rotateRight(root, sibling);sibling = pt->parent->right;}sibling->color = pt->parent->color;pt->parent->color = BLACK;sibling->right->color = BLACK;rotateLeft(root, pt->parent);pt = root;}} else {sibling = pt->parent->left;if (sibling->color == RED) {sibling->color = BLACK;pt->parent->color = RED;rotateRight(root, pt->parent);sibling = pt->parent->left;}if (sibling->left->color == BLACK && sibling->right->color == BLACK) {sibling->color = RED;pt = pt->parent;} else {if (sibling->left->color == BLACK) {sibling->right->color = BLACK;sibling->color = RED;rotateLeft(root, sibling);sibling = pt->parent->left;}sibling->color = pt->parent->color;pt->parent->color = BLACK;sibling->left->color = BLACK;rotateRight(root, pt->parent);pt = root;}}}pt->color = BLACK;
}
查找操作

查找操作相对简单,通过比较目标值与当前节点的值,决定向左子树还是右子树移动,直到找到目标值或到达空节点。

template <typename T>
bool RedBlackTree<T>::search(const T& data) {Node<T>* current = root;while (current != nullptr) {if (data == current->data) {return true;} else if (data < current->data) {current = current->left;} else {current = current->right;}}return false;
}
中序遍历

中序遍历用于验证红黑树的结构,确保所有节点按顺序排列。

template <typename T>
void RedBlackTree<T>::inorder() {inorderHelper(root);
}template <typename T>
void RedBlackTree<T>::inorderHelper(Node<T>* root) {if (root == nullptr) return;inorderHelper(root->left);

这篇关于深入理解红黑树:在C++中实现插入、删除和查找操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126345

相关文章

Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单

《Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单》:本文主要介绍Springboot的ThreadPoolTaskScheduler线... 目录ThreadPoolTaskScheduler线程池实现15分钟不操作自动取消订单概要1,创建订单后

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

C#实现文件读写到SQLite数据库

《C#实现文件读写到SQLite数据库》这篇文章主要为大家详细介绍了使用C#将文件读写到SQLite数据库的几种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录1. 使用 BLOB 存储文件2. 存储文件路径3. 分块存储文件《文件读写到SQLite数据库China编程的方法》博客中,介绍了文

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实