深入理解红黑树:在C++中实现插入、删除和查找操作

2024-09-01 07:44

本文主要是介绍深入理解红黑树:在C++中实现插入、删除和查找操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深入理解红黑树:在C++中实现插入、删除和查找操作

红黑树是一种自平衡二叉搜索树,广泛应用于各种算法和系统中。它通过颜色属性和旋转操作来保持树的平衡,从而保证插入、删除和查找操作的时间复杂度为O(log n)。本文将详细介绍如何在C++中实现一个红黑树,并提供插入、删除和查找操作的具体实现。

红黑树的基本性质

红黑树具有以下性质:

  1. 每个节点要么是红色,要么是黑色。
  2. 根节点是黑色。
  3. 每个叶子节点(NIL节点)是黑色。
  4. 如果一个节点是红色的,则它的两个子节点都是黑色的(即没有两个连续的红色节点)。
  5. 对每个节点,从该节点到其所有后代叶子节点的路径上,包含相同数量的黑色节点。

这些性质确保了红黑树的平衡性,使得树的最长路径不会超过最短路径的两倍。

红黑树节点定义

首先,我们定义一个红黑树节点类,用于表示红黑树中的每个节点。

enum Color { RED, BLACK };template <typename T>
class Node {
public:T data;Color color;Node* left;Node* right;Node* parent;Node(T data) : data(data), color(RED), left(nullptr), right(nullptr), parent(nullptr) {}
};
红黑树类定义

接下来,我们定义一个红黑树类,包含红黑树的基本结构和成员函数。

template <typename T>
class RedBlackTree {
private:Node<T>* root;void rotateLeft(Node<T>*& root, Node<T>*& pt);void rotateRight(Node<T>*& root, Node<T>*& pt);void fixInsert(Node<T>*& root, Node<T>*& pt);void fixDelete(Node<T>*& root, Node<T>*& pt);void inorderHelper(Node<T>* root);Node<T>* BSTInsert(Node<T>* root, Node<T>* pt);Node<T>* minValueNode(Node<T>* node);Node<T>* deleteBST(Node<T>* root, T data);public:RedBlackTree() : root(nullptr) {}void insert(const T& data);void deleteNode(const T& data);bool search(const T& data);void inorder();
};
插入操作

插入操作包括标准的二叉搜索树插入和红黑树的修复操作。首先,我们进行标准的BST插入,然后通过旋转和重新着色来修复红黑树的性质。

template <typename T>
void RedBlackTree<T>::insert(const T& data) {Node<T>* pt = new Node<T>(data);root = BSTInsert(root, pt);fixInsert(root, pt);
}template <typename T>
Node<T>* RedBlackTree<T>::BSTInsert(Node<T>* root, Node<T>* pt) {if (root == nullptr) return pt;if (pt->data < root->data) {root->left = BSTInsert(root->left, pt);root->left->parent = root;} else if (pt->data > root->data) {root->right = BSTInsert(root->right, pt);root->right->parent = root;}return root;
}template <typename T>
void RedBlackTree<T>::fixInsert(Node<T>*& root, Node<T>*& pt) {Node<T>* parent_pt = nullptr;Node<T>* grand_parent_pt = nullptr;while ((pt != root) && (pt->color != BLACK) && (pt->parent->color == RED)) {parent_pt = pt->parent;grand_parent_pt = pt->parent->parent;if (parent_pt == grand_parent_pt->left) {Node<T>* uncle_pt = grand_parent_pt->right;if (uncle_pt != nullptr && uncle_pt->color == RED) {grand_parent_pt->color = RED;parent_pt->color = BLACK;uncle_pt->color = BLACK;pt = grand_parent_pt;} else {if (pt == parent_pt->right) {rotateLeft(root, parent_pt);pt = parent_pt;parent_pt = pt->parent;}rotateRight(root, grand_parent_pt);std::swap(parent_pt->color, grand_parent_pt->color);pt = parent_pt;}} else {Node<T>* uncle_pt = grand_parent_pt->left;if (uncle_pt != nullptr && uncle_pt->color == RED) {grand_parent_pt->color = RED;parent_pt->color = BLACK;uncle_pt->color = BLACK;pt = grand_parent_pt;} else {if (pt == parent_pt->left) {rotateRight(root, parent_pt);pt = parent_pt;parent_pt = pt->parent;}rotateLeft(root, grand_parent_pt);std::swap(parent_pt->color, grand_parent_pt->color);pt = parent_pt;}}}root->color = BLACK;
}
删除操作

删除操作相对复杂,需要考虑多种情况。首先,我们进行标准的BST删除,然后通过旋转和重新着色来修复红黑树的性质。

template <typename T>
void RedBlackTree<T>::deleteNode(const T& data) {Node<T>* node = deleteBST(root, data);if (node != nullptr) {fixDelete(root, node);}
}template <typename T>
Node<T>* RedBlackTree<T>::deleteBST(Node<T>* root, T data) {if (root == nullptr) return root;if (data < root->data) {return deleteBST(root->left, data);} else if (data > root->data) {return deleteBST(root->right, data);}if (root->left == nullptr || root->right == nullptr) {return root;}Node<T>* temp = minValueNode(root->right);root->data = temp->data;return deleteBST(root->right, temp->data);
}template <typename T>
void RedBlackTree<T>::fixDelete(Node<T>*& root, Node<T>*& pt) {Node<T>* sibling;while (pt != root && pt->color == BLACK) {if (pt == pt->parent->left) {sibling = pt->parent->right;if (sibling->color == RED) {sibling->color = BLACK;pt->parent->color = RED;rotateLeft(root, pt->parent);sibling = pt->parent->right;}if (sibling->left->color == BLACK && sibling->right->color == BLACK) {sibling->color = RED;pt = pt->parent;} else {if (sibling->right->color == BLACK) {sibling->left->color = BLACK;sibling->color = RED;rotateRight(root, sibling);sibling = pt->parent->right;}sibling->color = pt->parent->color;pt->parent->color = BLACK;sibling->right->color = BLACK;rotateLeft(root, pt->parent);pt = root;}} else {sibling = pt->parent->left;if (sibling->color == RED) {sibling->color = BLACK;pt->parent->color = RED;rotateRight(root, pt->parent);sibling = pt->parent->left;}if (sibling->left->color == BLACK && sibling->right->color == BLACK) {sibling->color = RED;pt = pt->parent;} else {if (sibling->left->color == BLACK) {sibling->right->color = BLACK;sibling->color = RED;rotateLeft(root, sibling);sibling = pt->parent->left;}sibling->color = pt->parent->color;pt->parent->color = BLACK;sibling->left->color = BLACK;rotateRight(root, pt->parent);pt = root;}}}pt->color = BLACK;
}
查找操作

查找操作相对简单,通过比较目标值与当前节点的值,决定向左子树还是右子树移动,直到找到目标值或到达空节点。

template <typename T>
bool RedBlackTree<T>::search(const T& data) {Node<T>* current = root;while (current != nullptr) {if (data == current->data) {return true;} else if (data < current->data) {current = current->left;} else {current = current->right;}}return false;
}
中序遍历

中序遍历用于验证红黑树的结构,确保所有节点按顺序排列。

template <typename T>
void RedBlackTree<T>::inorder() {inorderHelper(root);
}template <typename T>
void RedBlackTree<T>::inorderHelper(Node<T>* root) {if (root == nullptr) return;inorderHelper(root->left);

这篇关于深入理解红黑树:在C++中实现插入、删除和查找操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126345

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

idea中创建新类时自动添加注释的实现

《idea中创建新类时自动添加注释的实现》在每次使用idea创建一个新类时,过了一段时间发现看不懂这个类是用来干嘛的,为了解决这个问题,我们可以设置在创建一个新类时自动添加注释,帮助我们理解这个类的用... 目录前言:详细操作:步骤一:点击上方的 文件(File),点击&nbmyHIgsp;设置(Setti

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

一文详解如何从零构建Spring Boot Starter并实现整合

《一文详解如何从零构建SpringBootStarter并实现整合》SpringBoot是一个开源的Java基础框架,用于创建独立、生产级的基于Spring框架的应用程序,:本文主要介绍如何从... 目录一、Spring Boot Starter的核心价值二、Starter项目创建全流程2.1 项目初始化(

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

mysql数据库重置表主键id的实现

《mysql数据库重置表主键id的实现》在我们的开发过程中,难免在做测试的时候会生成一些杂乱无章的SQL主键数据,本文主要介绍了mysql数据库重置表主键id的实现,具有一定的参考价值,感兴趣的可以了... 目录关键语法演示案例在我们的开发过程中,难免在做测试的时候会生成一些杂乱无章的SQL主键数据,当我们