深入理解红黑树:在C++中实现插入、删除和查找操作

2024-09-01 07:44

本文主要是介绍深入理解红黑树:在C++中实现插入、删除和查找操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深入理解红黑树:在C++中实现插入、删除和查找操作

红黑树是一种自平衡二叉搜索树,广泛应用于各种算法和系统中。它通过颜色属性和旋转操作来保持树的平衡,从而保证插入、删除和查找操作的时间复杂度为O(log n)。本文将详细介绍如何在C++中实现一个红黑树,并提供插入、删除和查找操作的具体实现。

红黑树的基本性质

红黑树具有以下性质:

  1. 每个节点要么是红色,要么是黑色。
  2. 根节点是黑色。
  3. 每个叶子节点(NIL节点)是黑色。
  4. 如果一个节点是红色的,则它的两个子节点都是黑色的(即没有两个连续的红色节点)。
  5. 对每个节点,从该节点到其所有后代叶子节点的路径上,包含相同数量的黑色节点。

这些性质确保了红黑树的平衡性,使得树的最长路径不会超过最短路径的两倍。

红黑树节点定义

首先,我们定义一个红黑树节点类,用于表示红黑树中的每个节点。

enum Color { RED, BLACK };template <typename T>
class Node {
public:T data;Color color;Node* left;Node* right;Node* parent;Node(T data) : data(data), color(RED), left(nullptr), right(nullptr), parent(nullptr) {}
};
红黑树类定义

接下来,我们定义一个红黑树类,包含红黑树的基本结构和成员函数。

template <typename T>
class RedBlackTree {
private:Node<T>* root;void rotateLeft(Node<T>*& root, Node<T>*& pt);void rotateRight(Node<T>*& root, Node<T>*& pt);void fixInsert(Node<T>*& root, Node<T>*& pt);void fixDelete(Node<T>*& root, Node<T>*& pt);void inorderHelper(Node<T>* root);Node<T>* BSTInsert(Node<T>* root, Node<T>* pt);Node<T>* minValueNode(Node<T>* node);Node<T>* deleteBST(Node<T>* root, T data);public:RedBlackTree() : root(nullptr) {}void insert(const T& data);void deleteNode(const T& data);bool search(const T& data);void inorder();
};
插入操作

插入操作包括标准的二叉搜索树插入和红黑树的修复操作。首先,我们进行标准的BST插入,然后通过旋转和重新着色来修复红黑树的性质。

template <typename T>
void RedBlackTree<T>::insert(const T& data) {Node<T>* pt = new Node<T>(data);root = BSTInsert(root, pt);fixInsert(root, pt);
}template <typename T>
Node<T>* RedBlackTree<T>::BSTInsert(Node<T>* root, Node<T>* pt) {if (root == nullptr) return pt;if (pt->data < root->data) {root->left = BSTInsert(root->left, pt);root->left->parent = root;} else if (pt->data > root->data) {root->right = BSTInsert(root->right, pt);root->right->parent = root;}return root;
}template <typename T>
void RedBlackTree<T>::fixInsert(Node<T>*& root, Node<T>*& pt) {Node<T>* parent_pt = nullptr;Node<T>* grand_parent_pt = nullptr;while ((pt != root) && (pt->color != BLACK) && (pt->parent->color == RED)) {parent_pt = pt->parent;grand_parent_pt = pt->parent->parent;if (parent_pt == grand_parent_pt->left) {Node<T>* uncle_pt = grand_parent_pt->right;if (uncle_pt != nullptr && uncle_pt->color == RED) {grand_parent_pt->color = RED;parent_pt->color = BLACK;uncle_pt->color = BLACK;pt = grand_parent_pt;} else {if (pt == parent_pt->right) {rotateLeft(root, parent_pt);pt = parent_pt;parent_pt = pt->parent;}rotateRight(root, grand_parent_pt);std::swap(parent_pt->color, grand_parent_pt->color);pt = parent_pt;}} else {Node<T>* uncle_pt = grand_parent_pt->left;if (uncle_pt != nullptr && uncle_pt->color == RED) {grand_parent_pt->color = RED;parent_pt->color = BLACK;uncle_pt->color = BLACK;pt = grand_parent_pt;} else {if (pt == parent_pt->left) {rotateRight(root, parent_pt);pt = parent_pt;parent_pt = pt->parent;}rotateLeft(root, grand_parent_pt);std::swap(parent_pt->color, grand_parent_pt->color);pt = parent_pt;}}}root->color = BLACK;
}
删除操作

删除操作相对复杂,需要考虑多种情况。首先,我们进行标准的BST删除,然后通过旋转和重新着色来修复红黑树的性质。

template <typename T>
void RedBlackTree<T>::deleteNode(const T& data) {Node<T>* node = deleteBST(root, data);if (node != nullptr) {fixDelete(root, node);}
}template <typename T>
Node<T>* RedBlackTree<T>::deleteBST(Node<T>* root, T data) {if (root == nullptr) return root;if (data < root->data) {return deleteBST(root->left, data);} else if (data > root->data) {return deleteBST(root->right, data);}if (root->left == nullptr || root->right == nullptr) {return root;}Node<T>* temp = minValueNode(root->right);root->data = temp->data;return deleteBST(root->right, temp->data);
}template <typename T>
void RedBlackTree<T>::fixDelete(Node<T>*& root, Node<T>*& pt) {Node<T>* sibling;while (pt != root && pt->color == BLACK) {if (pt == pt->parent->left) {sibling = pt->parent->right;if (sibling->color == RED) {sibling->color = BLACK;pt->parent->color = RED;rotateLeft(root, pt->parent);sibling = pt->parent->right;}if (sibling->left->color == BLACK && sibling->right->color == BLACK) {sibling->color = RED;pt = pt->parent;} else {if (sibling->right->color == BLACK) {sibling->left->color = BLACK;sibling->color = RED;rotateRight(root, sibling);sibling = pt->parent->right;}sibling->color = pt->parent->color;pt->parent->color = BLACK;sibling->right->color = BLACK;rotateLeft(root, pt->parent);pt = root;}} else {sibling = pt->parent->left;if (sibling->color == RED) {sibling->color = BLACK;pt->parent->color = RED;rotateRight(root, pt->parent);sibling = pt->parent->left;}if (sibling->left->color == BLACK && sibling->right->color == BLACK) {sibling->color = RED;pt = pt->parent;} else {if (sibling->left->color == BLACK) {sibling->right->color = BLACK;sibling->color = RED;rotateLeft(root, sibling);sibling = pt->parent->left;}sibling->color = pt->parent->color;pt->parent->color = BLACK;sibling->left->color = BLACK;rotateRight(root, pt->parent);pt = root;}}}pt->color = BLACK;
}
查找操作

查找操作相对简单,通过比较目标值与当前节点的值,决定向左子树还是右子树移动,直到找到目标值或到达空节点。

template <typename T>
bool RedBlackTree<T>::search(const T& data) {Node<T>* current = root;while (current != nullptr) {if (data == current->data) {return true;} else if (data < current->data) {current = current->left;} else {current = current->right;}}return false;
}
中序遍历

中序遍历用于验证红黑树的结构,确保所有节点按顺序排列。

template <typename T>
void RedBlackTree<T>::inorder() {inorderHelper(root);
}template <typename T>
void RedBlackTree<T>::inorderHelper(Node<T>* root) {if (root == nullptr) return;inorderHelper(root->left);

这篇关于深入理解红黑树:在C++中实现插入、删除和查找操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126345

相关文章

Java中字符串转时间与时间转字符串的操作详解

《Java中字符串转时间与时间转字符串的操作详解》Java的java.time包提供了强大的日期和时间处理功能,通过DateTimeFormatter可以轻松地在日期时间对象和字符串之间进行转换,下面... 目录一、字符串转时间(一)使用预定义格式(二)自定义格式二、时间转字符串(一)使用预定义格式(二)自

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

redis过期key的删除策略介绍

《redis过期key的删除策略介绍》:本文主要介绍redis过期key的删除策略,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录第一种策略:被动删除第二种策略:定期删除第三种策略:强制删除关于big key的清理UNLINK命令FLUSHALL/FLUSHDB命

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

C# foreach 循环中获取索引的实现方式

《C#foreach循环中获取索引的实现方式》:本文主要介绍C#foreach循环中获取索引的实现方式,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、手动维护索引变量二、LINQ Select + 元组解构三、扩展方法封装索引四、使用 for 循环替代

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构