Android安卓麻将识别研发流程( 一 )

2024-09-01 06:08

本文主要是介绍Android安卓麻将识别研发流程( 一 ),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Android安卓麻将识别研发流程( 一 )

未经过允许不得转载,转载请联系我,如何联系,点我头像。

连载已经完结,

百度网盘测试APP下载地址: 
链接:https://pan.baidu.com/s/1grwUcLkI9i3OABsLtB5h3Q 
提取码:pkbl 
先见效果图,另外我已经上传到了抖音视频,想看NB效果,可以点击链接直接观看:

http://v.douyin.com/roLnjL/ 

       本人从事机器学习有一些时间,感觉与一般做APP应用也没有啥差别,现在每天就是准备样本 ,调整参数,训练,验证结果。可能是我还没有达到哪些教授的水平能设计神经网络吧,感觉也就是一般马龙该做的杂七杂八事情。另外我更加关注移动设备AI的实现与效果,体验一样重要,识别的速度要快!

       接下来的博客开始记录我研究过程,过程是:采集样本->标注->训练->测试。

       先从准备样本开始。找一台高清拍照手机, 一张桌子, 一副麻将牌。刚好这些家里都有(* ̄︶ ̄)。

麻将一共27张不同的牌,先将麻将找出来。

      一般训练都需要图片,打算每张麻将拍摄100张左右,80张用于训练,20张用于测试。样本可能算少了一点,考虑到麻将背景单一,结构比较简单,根据我经验,这些样本应该算是一般够用的。

     拍摄图片拷贝到电脑,但是考虑到这些图片张数特别多100*27 = 2700张。这么多图片拷贝还是挺麻烦的,关键是图片还要按命名规范,重命名2700个图片就已经很累的,更别说去打标了。 由于这样,本人考虑可以拍摄视频,通过将视频裁剪出一张一张这样就简单多了,只用拍摄27个视频文件,只用重命名27个视频文件,通过python脚本将图片截出来,放到对应文件夹即可,既然会python,不得已才用人工啊 。

    拍摄视频技巧: 内心假设有一个半球透明遮罩盖在麻将上面,打开相机录像,验证遮罩上下左右四面八方来一遍,记得过程要缓慢,运动过快拍摄视频会比较模糊,后期图片也会比较模糊。

 

上图就是拍摄的视频文件,实际多一个麻将背景图视频。

 

接下来就要上python了,将视频截图保存到对应目录,并且按照一定的命名规范。如下图,

当然算法裁剪后的图还是需要简单人工挑选的,删掉没有麻将的图,删掉比较模糊的图。

现在开始上代码了,下一节将讲如何打标。

算法虽然简单,但是包含了命名规范,避免文件名相同覆盖,自己感觉还是很特意的。

for videodir in dirs:print('dealing {}'.format(videodir))videopath = os.path.join(VIDEO_PATH,videodir)cap = cv2.VideoCapture(videopath)videoname=os.path.splitext(videodir)[0]if videoname.find('_')>=0:   videoname=videoname.split('_')[0]print('videoname= {}'.format(videoname))imagepath_parrent = os.path.join(IMAGE_PATH,videoname)ret = cap.isOpened()if ret:if os.path.exists(imagepath_parrent)== False:os.mkdir(imagepath_parrent)imagepath =  os.path.join(imagepath_parrent,videoname)frame_num = 0frame_step = 0frame_success = 0while ret:ret,cameraImg = cap.read()frame_num+=1if frame_num%8==0:frame_success+=1frame_step=frame_step+1;cv2.imwrite(getImageFilePath(imagepath,frame_step), cameraImg)print('done {},total {}'.format(videodir,frame_success))

 

 

 

这篇关于Android安卓麻将识别研发流程( 一 )的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126158

相关文章

Ubuntu 24.04启用root图形登录的操作流程

《Ubuntu24.04启用root图形登录的操作流程》Ubuntu默认禁用root账户的图形与SSH登录,这是为了安全,但在某些场景你可能需要直接用root登录GNOME桌面,本文以Ubuntu2... 目录一、前言二、准备工作三、设置 root 密码四、启用图形界面 root 登录1. 修改 GDM 配

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

Spring Security中用户名和密码的验证完整流程

《SpringSecurity中用户名和密码的验证完整流程》本文给大家介绍SpringSecurity中用户名和密码的验证完整流程,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定... 首先创建了一个UsernamePasswordAuthenticationTChina编程oken对象,这是S

Android DataBinding 与 MVVM使用详解

《AndroidDataBinding与MVVM使用详解》本文介绍AndroidDataBinding库,其通过绑定UI组件与数据源实现自动更新,支持双向绑定和逻辑运算,减少模板代码,结合MV... 目录一、DataBinding 核心概念二、配置与基础使用1. 启用 DataBinding 2. 基础布局

Android ViewBinding使用流程

《AndroidViewBinding使用流程》AndroidViewBinding是Jetpack组件,替代findViewById,提供类型安全、空安全和编译时检查,代码简洁且性能优化,相比Da... 目录一、核心概念二、ViewBinding优点三、使用流程1. 启用 ViewBinding (模块级

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

java Long 与long之间的转换流程

《javaLong与long之间的转换流程》Long类提供了一些方法,用于在long和其他数据类型(如String)之间进行转换,本文将详细介绍如何在Java中实现Long和long之间的转换,感... 目录概述流程步骤1:将long转换为Long对象步骤2:将Longhttp://www.cppcns.c

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.