【王树森】RNN模型与NLP应用(8/9):Attention(个人向笔记)

2024-09-01 05:36

本文主要是介绍【王树森】RNN模型与NLP应用(8/9):Attention(个人向笔记),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

  • 基于RNN的Seq2Seq模型无法记住长序列
  • Attentnion机制可以大幅度提升Seq2Seq模型
    在这里插入图片描述

Seq2Seq Model with Attention

  • Attention可以让句子在逐步变长的时候不忘记前面的输入信息
  • Attention还可以告诉Decoder应该关注哪一个状态
  • 优点:Attention可以大幅度提高准确率
  • 缺点:Attention计算量比较大

Simple RNN + Attention

  • 需要计算最后一个输出的状态和前面所有状态的相关性(权重),把这个权重记为 α i \alpha_i αi,所有的权重总和为1
    在这里插入图片描述
    • 计算方法1(原版):①把 h i h_i hi s 0 s_0 s0 做concatenation,②然后和一个矩阵 W W W(需要被训练的参数)相乘后丢到 tanh 激活函数里面使其范围变为 [ − 1 , 1 ] [-1,1] [1,1] ,③然后再和 v T v^T vT 做内积得到一个实数。④最后把所有的权重做一个Softmax。
      在这里插入图片描述
    • 计算方法2(更流行,和Transformer一致):①将 h i h_i hi W K W_K WK(需要被训练的参数) 相乘得到 k i k_i ki,将 s 0 s_0 s0 W Q W_Q WQ(需要被训练的参数) 相乘得到 q 0 q_0 q0,其中 k i k_i ki q 0 q_0 q0 都是一维的向量。② k i T q 0 k^T_iq_0 kiTq0 得到权重 α i ~ \tilde{\alpha_i} αi~。③对所有的 α i ~ \tilde{\alpha_i} αi~ 做 Softmax即可得到权重。
      在这里插入图片描述
  • 我们对所有的 h i h_i hi 利用刚刚算出的权重计算加权平均得出一个向量 c 0 c_0 c0,其中一个 c c c 对应一个 s s s,计算出的加权平均向量被称为 Context vector。
    在这里插入图片描述
  • 对于更新状态来说,之前的Simple RNN是这样的,它不会去看前面的状态,而是只会看最后一个
    在这里插入图片描述
  • 而有Attention后更新状态还会把之前的信息 c 0 c_0 c0 考虑进去,也就是还会把前面的信息考虑进去,这样就把RNN遗忘的问题解决了
    在这里插入图片描述
  • 而对于后续的状态 s i s_i si 重复前面的步骤即可,注意每次权重 α i \alpha_i αi 都需要重新计算后得出 c i c_i ci
    在这里插入图片描述
  • Question: 有多少权重 α i \alpha_i αi 被计算了?
    • 对于每一个 c i c_i ci ,我们都i需要用 s i s_i si 来计算 m m m 个权重
    • 假设 Decoder 有 t t t 个状态,那么总共就需要计算 m t mt mt
    • 这个时间复杂度是很高的!
  • 权重可视化:在下面的图中,连线表示相关性,连线越粗,相关性越强。而可以看到Area和zone有比较粗的连线,而英语中的Area就对应法语中的zone:权重指导Decoder关注Encoder中正确(如zone会特别关注Area)的状态,从而生成正确的翻译
    在这里插入图片描述

Summary

  • 之前的Seq2Seq模型:Decoder只会关注最后一个状态,容易导致遗忘
  • Attention则会关注Encoder的所有状态
  • Attention还会指导Decoder关注的侧重点
  • 缺点:更高的计算复杂度,之前的模型只需要 O ( m + t ) O(m+t) O(m+t) 的复杂度,而Attention则需要 O ( m t ) O(mt) O(mt) 的复杂度,其中 m m m 是源序列的长度, t t t 是目标序列的长度

这篇关于【王树森】RNN模型与NLP应用(8/9):Attention(个人向笔记)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126086

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

zoj3820(树的直径的应用)

题意:在一颗树上找两个点,使得所有点到选择与其更近的一个点的距离的最大值最小。 思路:如果是选择一个点的话,那么点就是直径的中点。现在考虑两个点的情况,先求树的直径,再把直径最中间的边去掉,再求剩下的两个子树中直径的中点。 代码如下: #include <stdio.h>#include <string.h>#include <algorithm>#include <map>#

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验