本文主要是介绍矩形面积并、矩形面积交、矩形周长并(线段树、扫描线总结),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
转自:http://blog.csdn.net/lwt36/article/details/48908031
HDU 1542 [POJ 1151] Atlantis (矩形面积并)
-
题意:
求N<=100个矩形的面积并
-
分析:
- 离散化: 这些技巧都是老生常谈的了, 不然浮点数怎么建树, 离散化 x 坐标就可以了
- 扫描线: 首先把矩形按 y 轴分成两条边, 上边和下边, 对 x 轴建树, 扫描线可以看成一根平行于 x 轴的直线.
从 y=0 开始往上扫, 下边表示要计算面积 +1 , 上边表示已经扫过了 −1 , 直到扫到最后一条平行于 x 轴的边
但是真正在做的时候, 不需要完全模拟这个过程, 一条一条边地插入线段树就好了 - 线段树: 用于动态维护扫描线在往上走时, x 轴哪些区域是有合法面积的
- ps: 这种线段树是不用 lazy 的, 因为不用 push_down , 为啥不用 push_down , 因为没有查询操作
-
扫描线扫描的过程(建议配合代码模拟)
ps:无论说的再好,都不如自己在纸上模拟一遍扫描的过程,我自己学的时候模拟了很多遍
以下图转载自@kk303的博客
初始状态
扫到最下边的线, 点 1→3 更新为 1
扫到第二根线, 此时 S=lcnt!=0∗h两根线之间 , 得到绿色的面积, 加到答案中去, 随后更新计数
同上, 将黄色的面积加到答案中去
同上, 将灰色的面积加到答案中去
同上, 将紫色的面积加到答案中去
同上, 将蓝色的面积加到答案中去
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <string>
#include <set>
#include <vector>using namespace std;
#define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl
const int N = 205, INF = 0x3f3f3f3f, MOD = 1e9 + 7;int n;
struct Seg {double l, r, h; int d;Seg() {}Seg(double l, double r, double h, int d): l(l), r(r), h(h), d(d) {}bool operator< (const Seg& rhs) const {return h < rhs.h;}
} a[N];int cnt[N << 2];
double sum[N << 2], all[N];#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1void push_up(int l, int r, int rt) {if(cnt[rt]) sum[rt] = all[r + 1] - all[l];else if(l == r) sum[rt] = 0; else sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];
}void update(int L, int R, int v, int l, int r, int rt) {if(L <= l && r <= R) {cnt[rt] += v;push_up(l, r, rt);return;}int m = l + r >> 1;if(L <= m) update(L, R, v, lson);if(R > m) update(L, R, v, rson);push_up(l, r, rt);
}int main() {
#ifdef LOCALfreopen("in.txt", "r", stdin);
#endifios_base::sync_with_stdio(0);int kase = 0;while(scanf("%d", &n) == 1 && n) {for(int i = 1; i <= n; ++i) {double x1, y1, x2, y2;scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);a[i] = Seg(x1, x2, y1, 1);a[i + n] = Seg(x1, x2, y2, -1);all[i] = x1; all[i + n] = x2;}n <<= 1;sort(a + 1, a + 1 + n);sort(all + 1, all + 1 + n);int m = unique(all + 1, all + 1 + n) - all - 1;memset(cnt, 0, sizeof cnt);memset(sum, 0, sizeof sum);double ans = 0;for(int i = 1; i < n; ++i) {int l = lower_bound(all + 1, all + 1 + m, a[i].l) - all;int r = lower_bound(all + 1, all + 1 + m, a[i].r) - all;if(l < r) update(l, r - 1, a[i].d, 1, m, 1);ans += sum[1] * (a[i + 1].h - a[i].h);}printf("Test case #%d\nTotal explored area: %.2f\n\n", ++kase, ans);}return 0;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
HDU 1255 覆盖的面积 (矩形面积交)
-
题意:
求N<=1000个矩形覆盖至少两次区域的面积,也就是矩形面积交
-
分析
- 前面的与矩形面积并类似, 不同的是 push_up 的时候要考虑至少覆盖一次 one 和至少覆盖两次 two 的更新
尤其是当前被覆盖了一次的时候, 由于没有 push_down 操作, 父亲节点的信息是没有同步到儿子节点的, 这样的话 push_up 就要考虑了. - 父亲被记录覆盖了一次, 但是如果儿子被覆盖过, 这些操作都是在这个父亲这个大区间上的, 就相当于父亲区间被覆盖了至少两次, 所以 two 和 one 都要更新
-
代码
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <string>
#include <set>
#include <vector>using namespace std;
#define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl
const int N = 2e3 + 10, INF = 0x3f3f3f3f, MOD = 1e9 + 7;int n;
struct Seg {double l, r, h; int d;Seg() {}Seg(double l, double r, double h, double d): l(l), r(r), h(h), d(d) {}bool operator< (const Seg& rhs) const {return h < rhs.h;}
} a[N];int cnt[N << 2];
double one[N << 2], two[N << 2], all[N];#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1void push_up(int l, int r, int rt) {if(cnt[rt] >= 2) two[rt] = one[rt] = all[r + 1] - all[l];else if(cnt[rt] == 1) {one[rt] = all[r + 1] - all[l];if(l == r) two[rt] = 0;else two[rt] = one[rt << 1] + one[rt << 1 | 1];} else {if(l == r) one[rt] = two[rt] = 0;else {one[rt] = one[rt << 1] + one[rt << 1 | 1];two[rt] = two[rt << 1] + two[rt << 1 | 1];}}
}void update(int L, int R, int v, int l, int r, int rt) {if(L <= l && r <= R) {cnt[rt] += v;push_up(l, r, rt);return;}int m = l + r >> 1;if(L <= m) update(L, R, v, lson);if(R > m) update(L, R, v, rson);push_up(l, r, rt);
}int main() {
#ifdef LOCALfreopen("in.txt", "r", stdin);
#endifios_base::sync_with_stdio(0);int t; scanf("%d", &t);while(t--) {scanf("%d", &n);for(int i = 1; i <= n; ++i) {double x1, y1, x2, y2;scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);a[i] = Seg(x1, x2, y1, 1);a[i + n] = Seg(x1, x2, y2, -1);all[i] = x1; all[i + n] = x2;}n <<= 1;sort(a + 1, a + 1 + n);sort(all + 1, all + 1 + n);int m = unique(all + 1, all + 1 + n) - all - 1;memset(cnt, 0, sizeof cnt);memset(one, 0, sizeof one);memset(two, 0, sizeof two);double ans = 0;for(int i = 1; i < n; ++i) {int l = lower_bound(all + 1, all + 1 + m, a[i].l) - all;int r = lower_bound(all + 1, all + 1 + m, a[i].r) - all;if(l < r) update(l, r - 1, a[i].d, 1, m, 1);ans += two[1] * (a[i + 1].h - a[i].h);}printf("%.2f\n", ans);}return 0;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
HDU 1828 [POJ 1177] Picture(矩形周长并)
-
题意:
求N<=5000个矩形的轮廓长度,也就是矩形周长并
-
分析一:
可以用类似矩形面积并的办法, 不过这次我们不乘高, 不算面积罢了.
需要注意的是, 由于周长的线会被重复覆盖, 我们每次需要和上一次的作差.
但是这样仅仅是 x 轴的, 不过我可以再 y 轴做一次加起来就可以了
-
演示 x 轴求长度和的部分
-
代码一:
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <string>
#include <set>
#include <vector>using namespace std;
#define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl
const int N = 1e4 + 10, INF = 0x3f3f3f3f, MOD = 1e9 + 7;int n, m[2];
int sum[N << 2], cnt[N << 2], all[2][N];
struct Seg {int l, r, h, d;Seg() {}Seg(int l, int r, int h, int d): l(l), r(r), h(h), d(d) {}bool operator< (const Seg& rhs) const {return h < rhs.h;}
} a[2][N];#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1void push_up(int p, int l, int r, int rt) {if(cnt[rt]) sum[rt] = all[p][r + 1] - all[p][l];else if(l == r) sum[rt] = 0;else sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];
}void update(int p, int L, int R, int v, int l, int r, int rt) {if(L <= l && r <= R) {cnt[rt] += v;push_up(p, l, r, rt);return;}int m = l + r >> 1;if(L <= m) update(p, L, R, v, lson);if(R > m) update(p, L, R, v, rson);push_up(p, l, r, rt);
}int main() {
#ifdef LOCALfreopen("in.txt", "r", stdin);
#endifios_base::sync_with_stdio(0);while(scanf("%d", &n) == 1) {for(int i = 1; i <= n; ++i) {int x1, y1, x2, y2;scanf("%d%d%d%d", &x1, &y1, &x2, &y2);all[0][i] = x1, all[0][i + n] = x2;all[1][i] = y1, all[1][i + n] = y2;a[0][i] = Seg(x1, x2, y1, 1);a[0][i + n] = Seg(x1, x2, y2, -1);a[1][i] = Seg(y1, y2, x1, 1);a[1][i + n] = Seg(y1, y2, x2, -1);}n <<= 1;sort(all[0] + 1, all[0] + 1 + n);m[0] = unique(all[0] + 1, all[0] + 1 + n) - all[0] - 1;sort(all[1] + 1, all[1] + 1 + n);m[1] = unique(all[1] + 1, all[1] + 1 + n) - all[1] - 1;sort(a[0] + 1, a[0] + 1 + n);sort(a[1] + 1, a[1] + 1 + n);
int ans = 0;for(int i = 0; i < 2; ++i) {int t = 0, last = 0;memset(cnt, 0, sizeof cnt);memset(sum, 0, sizeof sum);for(int j = 1; j <= n; ++j) {int l = lower_bound(all[i] + 1, all[i] + 1 + m[i], a[i][j].l) - all[i];int r = lower_bound(all[i] + 1, all[i] + 1 + m[i], a[i][j].r) - all[i];if(l < r) update(i, l, r - 1, a[i][j].d, 1, m[i], 1);t += abs(sum[1] - last);last = sum[1];}ans += t;}printf("%d\n", ans);}return 0;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
-
分析二:
当然我们也可只对 x 轴做一次扫描线, 只要同时维护 y 轴竖线(就是求矩形面积并的时候的高)的个数, vtl 记录竖线的个数
需要的注意的是竖线重合的情况, 需要再开变量 lbd,rbd 来判断重合, 避免重复计算
-
代码二:
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <string>
#include <set>
#include <vector>using namespace std;
#define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl
const int N = 2e4 + 10, INF = 0x3f3f3f3f, MOD = 1e9 + 7;int n;
int sum[N << 2], cnt[N << 2], vtl[N << 2];
bool lbd[N << 2], rbd[N << 2];
struct Seg {int l, r, h, d;Seg() {}Seg(int l, int r, int h, int d): l(l), r(r), h(h), d(d) {}bool operator< (const Seg& rhs) const {return h < rhs.h;}
} a[N];#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1void push_up(int l, int r, int rt) {if(cnt[rt]) {lbd[rt] = rbd[rt] = true;sum[rt] = r + 1 - l;vtl[rt] = 2;}
else if(l == r) sum[rt] = vtl[rt] = lbd[rt] = rbd[rt] = 0;else {lbd[rt] = lbd[rt << 1];rbd[rt] = rbd[rt << 1 | 1];sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];vtl[rt] = vtl[rt << 1] + vtl[rt << 1 | 1];if(rbd[rt << 1] && lbd[rt << 1 | 1]) vtl[rt] -= 2; }
}void update(int L, int R, int v, int l, int r, int rt) {if(L <= l && r <= R) {cnt[rt] += v;push_up(l, r, rt);return;}int m = l + r >> 1;if(L <= m) update(L, R, v, lson);if(R > m) update(L, R, v, rson);push_up(l, r, rt);
}int main() {
#ifdef LOCALfreopen("in.txt", "r", stdin);
#endifios_base::sync_with_stdio(0);while(scanf("%d", &n) == 1) {int Min = 1e4, Max = -1e4;for(int i = 1; i <= n; ++i) {int x1, y1, x2, y2;scanf("%d%d%d%d", &x1, &y1, &x2, &y2);Min = min(Min, x1);Max = max(Max, x2);a[i] = Seg(x1, x2, y1, 1);a[i + n] = Seg(x1, x2, y2, -1);}n <<= 1;sort(a + 1, a + 1 + n);
int ans = 0, last = 0;for(int i = 1; i <= n; ++i) {if(a[i].l < a[i].r) update(a[i].l, a[i].r - 1, a[i].d, Min, Max - 1, 1);ans += vtl[1] * (a[i + 1].h - a[i].h);ans += abs(sum[1] - last);last = sum[1];}printf("%d\n", ans);}return 0;
}
这篇关于矩形面积并、矩形面积交、矩形周长并(线段树、扫描线总结)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!