本文主要是介绍Code Practice Journal | Day59-60_Graph09 最短路径(待更),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
1. Dijkstra
1.1 原理与步骤
步骤:
- 选取距离源点最近且未被访问过的节点
- 标记该节点为已访问
- 更新未访问节点到源点的距离
1.2 代码实现
以KamaCoder47题为例
题目:47. 参加科学大会(第六期模拟笔试) (kamacoder.com)
class Program
{public static void Main(string[] args){//处理输入string[] dimensions = Console.ReadLine().Split();int n = int.Parse(dimensions[0]);int m = int.Parse(dimensions[1]);// visited & minDist & graphbool[] visited = new bool[n + 1];int[] minDist = new int[n + 1];int[][] graph = new int[n + 1][];for (int i = 0; i <= n; i++){graph[i] = new int[n + 1];for (int j = 0; j <= n; j++){graph[i][j] = int.MaxValue;}}// 填充for (int i = 0; i <= n; i++){visited[i] = false;if (i == 1) minDist[i] = 0;else minDist[i] = int.MaxValue;}for (int i = 0; i < m; i++){string[] edges = Console.ReadLine().Split();int start = int.Parse(edges[0]);int end = int.Parse(edges[1]);int weight = int.Parse(edges[2]);graph[start][end] = weight;}//int result = Dj(graph, n, visited, minDist);Console.WriteLine(result);}public static int Dj(int[][] graph, int n, bool[] visited, int[] minDist){for (int count = 1; count < n + 1; count++){//find min nodeint mindist = int.MaxValue;int minnode = 0;for (int i = 1; i < n + 1; i++){if (visited[i] == false){if (minDist[i] < mindist){minnode = i;mindist = minDist[i];}}}//update visitedvisited[minnode] = true;//update minDistfor (int i = 1; i < n + 1; i++){if (graph[minnode][i] != int.MaxValue){minDist[i] = Math.Min(graph[minnode][i] + mindist, minDist[i]);}}Console.WriteLine(string.Join(" ", minDist));}return minDist[n] == int.MaxValue ? -1 : minDist[n];}
}
1.3 堆优化
2. Bellman_ford
2.1 原理与步骤
2.2 代码实现
class Program
{public static void Main(string[] args){//处理输入string[] dimensions = Console.ReadLine().Split();int n = int.Parse(dimensions[0]);int m = int.Parse(dimensions[1]);//minDistint[] minDist = new int[n + 1];for (int i = 0; i <= n; i++){minDist[i] = i == 1 ? 0 : int.MaxValue;}//edgesint[][] edges = new int[m][];for (int i = 0; i < m; i++){edges[i] = new int[3];string[] edge = Console.ReadLine().Split();edges[i][0] = int.Parse(edge[0]);edges[i][1] = int.Parse(edge[1]);edges[i][2] = int.Parse(edge[2]);}//BFif (BF(edges, minDist, n - 1)){Console.WriteLine(minDist[n]);}else{Console.WriteLine("unconnected");}}public static bool BF(int[][] edges, int[] minDist, int n){bool isUpdate = true;int count = 1;while (count <= n && isUpdate == true){count++;isUpdate = false;for (int i = 0; i < edges.Length; i++){int start = edges[i][0];int end = edges[i][1];int weight = edges[i][2];if (minDist[start] != int.MaxValue){int dist = minDist[start] + weight;if (dist < minDist[end]){minDist[end] = dist;isUpdate = true;}}}}return !isUpdate;}
}
2.3 队列优化
2.4 应用场景
这篇关于Code Practice Journal | Day59-60_Graph09 最短路径(待更)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!