【多校第9场】【组合数学】【区间dp】【Expression】

2024-08-31 16:48

本文主要是介绍【多校第9场】【组合数学】【区间dp】【Expression】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Expression

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 370    Accepted Submission(s): 208


Problem Description
Teacher Mai has  n  numbers  a1,a2,,an and  n1  operators("+", "-" or "*") op1,op2,,opn1 , which are arranged in the form  a1 op1 a2 op2 a3  an .

He wants to erase numbers one by one. In  i -th round, there are  n+1i  numbers remained. He can erase two adjacent numbers and the operator between them, and then put a new number (derived from this one operation) in this position. After  n1  rounds, there is the only one number remained. The result of this sequence of operations is the last number remained.


He wants to know the sum of results of all different sequences of operations. Two sequences of operations are considered different if and only if in one round he chooses different numbers.

For example, a possible sequence of operations for " 1+4683 " is  1+46831+4(2)31+(8)3(7)321 .

Input
There are multiple test cases.

For each test case, the first line contains one number  n(2n100) .

The second line contains  n  integers  a1,a2,,an(0ai109) .

The third line contains a string with length  n1  consisting "+","-" and "*", which represents the operator sequence.

Output
For each test case print the answer modulo  109+7 .

Sample Input
  
3 3 2 1 -+ 5 1 4 6 8 3 +*-*

Sample Output
  
2 999999689
Hint
Two numbers are considered different when they are in different positions.

Author
xudyh

Source
2015 Multi-University Training Contest 9

Recommend
wange2014   |   We have carefully selected several similar problems for you:   5405  5404  5403  5402  5401 




#include <cstring>
#include <stdio.h>
#include <algorithm>
#include <iostream>
#include <cmath>
#include <map>
#include <string>
#include <queue>
#include <bitset>
using namespace std;int n;
const int N = 210;
const int MOD = 1e9 + 7;
typedef long long ll;
int a[N];
char op[N];
ll dp[N][N];
ll comb[N][N];
ll fac[N];
void init()
{comb[0][0] = 1;for(int i=0;i<=101;i++){comb[0][i] = 0;comb[i][0] = 1;for(int j=1;j<=i;j++)comb[i][j] = (comb[i-1][j] + comb[i-1][j-1]) % MOD;}fac[0] = 1;for(int i=1;i<=101;i++) fac[i] = fac[i-1] * i % MOD;}int main()
{init();while(scanf("%d",&n) != EOF){for(int i=0;i<n;i++){scanf("%d",&a[i]);}scanf("%s",op);for(int j=0;j<n;j++) {dp[j][j] = a[j];for(int i=j-1;i>=0;i--) {dp[i][j] = 0;for(int k=i;k<j;k++) {if(op[k] == '*') {dp[i][j] = (dp[i][j] + (dp[i][k] * dp[k+1][j]) % MOD * comb[j-i-1][k-i]) % MOD;}else if(op[k] == '+') {dp[i][j] = (dp[i][j] + (dp[i][k] * fac[j-k-1] + dp[k+1][j] * fac[k-i]) % MOD * comb[j-i-1][k-i]) % MOD;}else{dp[i][j] = (dp[i][j] + (dp[i][k] * fac[j-k-1] - dp[k+1][j] * fac[k-i]) % MOD * comb[j-i-1][k-i]) % MOD;}}}}if(dp[0][n-1] < 0) dp[0][n-1] += MOD;printf("%I64d\n",dp[0][n-1]);}return 0;
}


这篇关于【多校第9场】【组合数学】【区间dp】【Expression】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124447

相关文章

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu4869(逆元+求组合数)

//输入n,m,n表示翻牌的次数,m表示牌的数目,求经过n次操作后共有几种状态#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#includ

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

usaco 1.1 Broken Necklace(DP)

直接上代码 接触的第一道dp ps.大概的思路就是 先从左往右用一个数组在每个点记下蓝或黑的个数 再从右到左算一遍 最后取出最大的即可 核心语句在于: 如果 str[i] = 'r'  ,   rl[i]=rl[i-1]+1, bl[i]=0 如果 str[i] = 'b' ,  bl[i]=bl[i-1]+1, rl[i]=0 如果 str[i] = 'w',  bl[i]=b

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

hdu 1754 I Hate It(线段树,单点更新,区间最值)

题意是求一个线段中的最大数。 线段树的模板题,试用了一下交大的模板。效率有点略低。 代码: #include <stdio.h>#include <string.h>#define TREE_SIZE (1 << (20))//const int TREE_SIZE = 200000 + 10;int max(int a, int b){return a > b ? a :

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col