Linux驱动开发基础(IRDA 红外遥控模块)

2024-08-31 16:20

本文主要是介绍Linux驱动开发基础(IRDA 红外遥控模块),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

所学来自百问网 

目录

1.红外遥控简介

2.硬件设计

3.软件设计

4. 示例代码

4.1 驱动代码

4.2 Makefile

4.3 实验效果


1.红外遥控简介

红外遥控被广泛应用于家用电器、工业控制和智能仪器系统中,像我们熟知的有电视机盒子遥控器、空调遥控器。红外遥控器系统分为发送端和接收端,如下图所示。

发送端就是红外遥控器,上面有许多按键,当我们按下遥控器按键时,遥控器内部电路会进行编码和调制,再通过红外发射头,将信号以肉眼不可见的红外线发射出去。红外线线虽然肉眼不可见,但可以通过手机摄像头看到,常用该方法检查遥控器是否正常工作。

接收端是一个红外接收头,收到红外信号后,内部电路会进行信号放大和解调,再将数据传给板子上的 GPIO,板子收到数据后再解码才能确定是哪个按键被按下。

2.硬件设计

IRDA 红外接收头,只需要一个GPIO即可实现数据的传输,这种传输协议叫做“1-Wire单总线”。顾名思义,即只有一根数据线,系统中的数据交换、控制都由这根线完成。

原理图中的U1(HS0038)即为IRDA红外接收头,1脚VDD接到了3V3,2 脚GND接到了GND,3脚IRD外接GPIO。

3.软件设计

我们按下遥控器按键的时候,遥控器自动发送某个红外信号,接收头接收到红外信号,然后把红外信号转换成电平信号,通过IRD这根线,传给SOC。整个传输,只涉及单向传输,由HS0038向主芯片传送。

红外协议有:NEC、SONY、RC5、RC6等,常用的就是NEC格式,因此我们主要对NEC进行讲解。

NEC 协议的开始是一段引导码:

这个引导码由一个9ms的低脉冲加上一个4.5ms的高脉冲组成,它用来通知接收方我要开始传输数据了。

然后接着的是数据,数据由4字节组成:地址、地址(取反)、数据、数据(取反),取反是用来校验用的。

地址是指遥控器的ID,每一类遥控器的ID都不一样,这样就可以防止操控电视的遥控器影响空调。数据就是遥控器上的不同按键值。

从前面的图可以知道,NEC每次要发32位(地址、地址取反、数据、数据取反,每个8位)的数据。数据的1和0,开始都是0.56ms的低脉冲,对于数据1,后面的高脉冲比较长,对于数据0,后面的高脉冲比较短。

第一次按下按键时,它会发出引导码,地址,地址取反,数据,数据取反。

但当我们一直按着按键不松的时候,会触发连发码(重复码),这个连发码由9ms的低脉冲,2.25ms 的高脉冲组成, 表示现在按的还是上次一样的按键

4. 示例代码

4.1 驱动代码

#include <linux/module.h>
#include <linux/poll.h>#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>
#include <linux/gpio/consumer.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/of_irq.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/slab.h>
#include <linux/fcntl.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <asm/current.h>
#include <linux/delay.h>
#include <linux/ktime.h>
#include <linux/version.h>static int major;
static struct class* hs0038_class;
static struct gpio_desc *gpio_hs0038_pin;
static int irq;
static wait_queue_head_t hs0038_wq;
static u64 hs0038_edge_time[100];
static int hs0038_edge_cnt = 0;
static unsigned int hs0038_data = 0;  int hs0038_parse_data(unsigned int *val)
{u64 tmp;unsigned char data[4];int i, j, m;// 判断是否是连发码(重复码)if(hs0038_edge_cnt == 4){tmp = hs0038_edge_time[1] - hs0038_edge_time[0];if(tmp > 8000000 && tmp < 10000000){tmp = hs0038_edge_time[2] - hs0038_edge_time[1];if(tmp < 3000000){*val = hs0038_data;return 0;}}}// m表示中断数m = 3;if(hs0038_edge_cnt >= 68) // 68是4 + 64 64表示接收一个数据产生两次中断,4是两次的引导码{for(i = 0; i < 4; i++) // 4个字节的数据{data[i] = 0; // 清空数组for(j = 0; j < 8; j++) {if(hs0038_edge_time[m+1] - hs0038_edge_time[m] > 1000000) // 高电平持续超过1ms表示数据1data[i] |= (1 << j);m += 2;// 中断次数加2}}// 校验数据data[1] = ~data[1];if(data[0] != data[1]){return -2;}data[3] = ~data[3];if(data[2] != data[3]){return -2;}hs0038_data = (data[0] << 8) | data[2];*val = hs0038_data;return 0;}else{return -1;}}static irqreturn_t hs0038_isr(int irq, void * dev_id)
{unsigned int val;int ret;#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 0, 0))hs0038_edge_time[hs0038_edge_cnt++] = ktime_get_boottime_ns();
#elsehs0038_edge_time[hs0038_edge_cnt++] = ktime_get_boot_ns();
#endif// 判断超时if(hs0038_edge_cnt >= 2){if(hs0038_edge_time[hs0038_edge_cnt-1] - hs0038_edge_time[hs0038_edge_cnt-2] > 6000000){hs0038_edge_time[0] = hs0038_edge_time[hs0038_edge_cnt-1];hs0038_edge_cnt = 1;return IRQ_HANDLED; // IRQ_WAKE_THREAD;}}ret = hs0038_parse_data(&val);if (!ret){/* 解析成功 */hs0038_edge_cnt = 0;printk("get ir code = 0x%x\n", val);		}else if (ret == -2){/* 解析失败 */hs0038_edge_cnt = 0;}return IRQ_HANDLED;
}static ssize_t hs0038_read(struct file *file, char __user *buf, size_t size, loff_t *offset)
{return 0;
}static unsigned int hs0038_poll (struct file *file, struct poll_table_struct *wait)
{return 0;
}
static struct file_operations hs0038_opes = {.owner = THIS_MODULE,.read = hs0038_read,.poll = hs0038_poll,
};static int hs0038_probe(struct platform_device *pdev)
{int err;gpio_hs0038_pin = gpiod_get(&pdev->dev,NULL,0); irq = gpiod_to_irq(gpio_hs0038_pin);err = request_irq(irq, hs0038_isr, IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, "hs0038", NULL);device_create(hs0038_class, NULL, MKDEV(major, 0), NULL,"myhs0038");return 0;
}
static int hs0038_remove(struct platform_device *pdev)
{device_destroy(hs0038_class, MKDEV(major, 0));gpiod_put(gpio_hs0038_pin);free_irq(irq,NULL);return 0;
}static struct of_device_id  ask100_hs0038[] = {{ .compatible = "100ask,hs0038" },{},};static struct platform_driver hs0038_dri = {.probe = hs0038_probe,.remove = hs0038_remove,.driver = {.name ="100ask_hs0038",.of_match_table = ask100_hs0038,},
};static int __init hs0038_init(void)
{int err;major =register_chrdev(0, "hs0038", &hs0038_opes);hs0038_class = class_create(THIS_MODULE, "hs0038_class");init_waitqueue_head(&hs0038_wq);err = platform_driver_register(&hs0038_dri);return err;
}static void __exit hs0038_exit(void)
{platform_driver_unregister(&hs0038_dri);unregister_chrdev(major, "hs0038");class_destroy(hs0038_class);}module_init(hs0038_init);
module_exit(hs0038_exit);
MODULE_LICENSE("GPL");

4.2 Makefile


# 1. 使用不同的开发板内核时, 一定要修改KERN_DIR
# 2. KERN_DIR中的内核要事先配置、编译, 为了能编译内核, 要先设置下列环境变量:
# 2.1 ARCH,          比如: export ARCH=arm64
# 2.2 CROSS_COMPILE, 比如: export CROSS_COMPILE=aarch64-linux-gnu-
# 2.3 PATH,          比如: export PATH=$PATH:/home/book/100ask_roc-rk3399-pc/ToolChain-6.3.1/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-linux-gnu/bin 
# 注意: 不同的开发板不同的编译器上述3个环境变量不一定相同,
#       请参考各开发板的高级用户使用手册#KERN_DIR =  /home/book/100ask_stm32mp157_pro-sdk/Linux-5.4
KERN_DIR =  /home/book/100ask_imx6ull-sdk/Linux-4.9.88all:make -C $(KERN_DIR) M=`pwd` modules $(CROSS_COMPILE)gcc -o hs0038_test hs0038_test.c
clean:make -C $(KERN_DIR) M=`pwd` modules cleanrm -rf modules.order  hs0038_test# 参考内核源码drivers/char/ipmi/Makefile
# 要想把a.c, b.c编译成ab.ko, 可以这样指定:
# ab-y := a.o b.o
# obj-m += ab.oobj-m += hs0038_drv.o

4.3 实验效果

这篇关于Linux驱动开发基础(IRDA 红外遥控模块)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124396

相关文章

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Linux中SSH服务配置的全面指南

《Linux中SSH服务配置的全面指南》作为网络安全工程师,SSH(SecureShell)服务的安全配置是我们日常工作中不可忽视的重要环节,本文将从基础配置到高级安全加固,全面解析SSH服务的各项参... 目录概述基础配置详解端口与监听设置主机密钥配置认证机制强化禁用密码认证禁止root直接登录实现双因素

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Linux如何快速检查服务器的硬件配置和性能指标

《Linux如何快速检查服务器的硬件配置和性能指标》在运维和开发工作中,我们经常需要快速检查Linux服务器的硬件配置和性能指标,本文将以CentOS为例,介绍如何通过命令行快速获取这些关键信息,... 目录引言一、查询CPU核心数编程(几C?)1. 使用 nproc(最简单)2. 使用 lscpu(详细信

linux重启命令有哪些? 7个实用的Linux系统重启命令汇总

《linux重启命令有哪些?7个实用的Linux系统重启命令汇总》Linux系统提供了多种重启命令,常用的包括shutdown-r、reboot、init6等,不同命令适用于不同场景,本文将详细... 在管理和维护 linux 服务器时,完成系统更新、故障排查或日常维护后,重启系统往往是必不可少的步骤。本文

Python中对FFmpeg封装开发库FFmpy详解

《Python中对FFmpeg封装开发库FFmpy详解》:本文主要介绍Python中对FFmpeg封装开发库FFmpy,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、FFmpy简介与安装1.1 FFmpy概述1.2 安装方法二、FFmpy核心类与方法2.1 FF

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py