本文主要是介绍Question mutiple pdf‘s using openai, pinecone, langchain,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
题意:使用 OpenAI、Pinecone 和 LangChain 对多个 PDF 文件进行提问。
问题背景:
I am trying to ask questions against a multiple pdf using pinecone and openAI but I dont know how to.
我正在尝试使用 Pinecone 和 OpenAI 对多个 PDF 文件进行提问,但我不知道该怎么做。
The code below works for asking questions against one document. but I would like to have multiple documents to ask questions against:
下面的代码可以用于对一个文档进行提问,但我想要能够对多个文档提问:
# process_message.py
from flask import request
import pinecone
# from PyPDF2 import PdfReader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import ElasticVectorSearch, Pinecone, Weaviate, FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI
import os
import json
# from constants.company import file_company_id_column, file_location_column, file_name_column
from services.files import FileFireStorage
from middleware.auth import check_authorization
import configparser
from langchain.document_loaders import UnstructuredPDFLoader, OnlinePDFLoader, PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitterdef process_message():# Create a ConfigParser object and read the config.ini fileconfig = configparser.ConfigParser()config.read('config.ini')# Retrieve the value of OPENAI_API_KEYopenai_key = config.get('openai', 'OPENAI_API_KEY')pinecone_env_key = config.get('pinecone', 'PINECONE_ENVIRONMENT')pinecone_api_key = config.get('pinecone', 'PINECONE_API_KEY')loader = PyPDFLoader("docs/ops.pdf")data = loader.load()# data = body['data'][1]['name']# Print information about the loaded dataprint(f"You have {len(data)} document(s) in your data")print(f"There are {len(data[30].page_content)} characters in your document")# Chunk your data up into smaller documentstext_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=0)texts = text_splitter.split_documents(data)embeddings = OpenAIEmbeddings(openai_api_key=openai_key)pinecone.init(api_key=pinecone_api_key, environment=pinecone_env_key)index_name = "pdf-chatbot" # Put in the name of your Pinecone index heredocsearch = Pinecone.from_texts([t.page_content for t in texts], embeddings, index_name=index_name)# Query those docs to get your answer backllm = OpenAI(temperature=0, openai_api_key=openai_key)chain = load_qa_chain(llm, chain_type="stuff")query = "Are there any other documents listed in this document?"docs = docsearch.similarity_search(query)answer = chain.run(input_documents=docs, question=query)print(answer)return answer
I added as many comments as I could there. I got this information from
我在代码中添加了尽可能多的注释。我从以下来源获取了这些信息:https://www.youtube.com/watch?v=h0DHDp1FbmQ
I tried to look at other stackoverflow questions about this but could not find anything similar
我试图查看其他与此相关的 Stack Overflow 问题,但没有找到类似的内容。
问题解决:
You can load multiple PDFS with PyPDFDirectoryLoader
你可以使用 `PyPDFDirectoryLoader` 加载多个 PDF 文件。
这篇关于Question mutiple pdf‘s using openai, pinecone, langchain的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!