【PyTorch常用库函数】一文向您详解 with torch.no_grad(): 的高效用法

2024-08-31 14:44

本文主要是介绍【PyTorch常用库函数】一文向您详解 with torch.no_grad(): 的高效用法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


在这里插入图片描述

🎬 鸽芷咕:个人主页

 🔥 个人专栏: 《C++干货基地》《粉丝福利》

⛺️生活的理想,就是为了理想的生活!

引言

在训练神经网络时,我们通常需要计算损失函数关于模型参数的梯度,以便通过梯度下降等优化算法更新参数。然而,在评估阶段,我们只关心模型的输出,而不需要更新参数。在这种情况下,使用 with torch.no_grad(): 上下文管理器可以有效地告诉 PyTorch 不要计算或存储梯度,从而节省计算资源,加快评估速度。

文章目录

    • 引言
    • with torch.no_grad() 的原理
    • 使用场景
      • 1. 模型评估
      • 2. 模型推理
    • 注意事项
    • 结论

with torch.no_grad() 的原理

with torch.no_grad() 是一个上下文管理器,它会在进入该上下文时自动将模型设置为“评估模式”,并在此期间禁用梯度计算。这意味着在此上下文中,所有计算得出的张量都不会跟踪它们的计算历史,从而不会计算梯度。当退出该上下文时,模型会恢复到之前的模式(通常是“训练模式”)。

使用场景

1. 模型评估

在训练过程中,我们经常需要在验证集或测试集上评估模型的性能。这时,我们使用 with torch.no_grad(): 来确保在评估过程中不会计算梯度,从而节省计算资源。

model.eval()  # 将模型设置为评估模式
with torch.no_grad():for data, target in test_loader:output = model(data)loss = criterion(output, target)test_loss += loss.item()_, predicted = torch.max(output, 1)total += target.size(0)correct += (predicted == target).sum().item()

2. 模型推理

在模型部署到生产环境后,我们通常只需要进行前向传播以获得模型的输出。在这种情况下,我们同样可以使用 with torch.no_grad(): 来提高推理速度。

with torch.no_grad():output = model(input_data)

注意事项

  • with torch.no_grad() 只影响它内部的代码块。退出该上下文后,模型会恢复到之前的状态。
  • 如果在训练过程中需要频繁地在训练和评估模式之间切换,可以考虑使用模型对象的 eval()train() 方法,这两个方法会分别将模型设置为评估模式和训练模式。

结论

with torch.no_grad(): 是 PyTorch 中一个非常有用的工具,它可以帮助我们在不需要计算梯度的场景中节省计算资源,加快模型评估和推理的速度。通过正确使用这个上下文管理器,我们可以更高效地开发和部署深度学习模型。

这篇关于【PyTorch常用库函数】一文向您详解 with torch.no_grad(): 的高效用法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124198

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级