模拟退火算法求函数最大、小值——python实现

2024-08-31 06:18

本文主要是介绍模拟退火算法求函数最大、小值——python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

模拟退火算法(Simulate Anneal,SA)是一种通用概率演算法,用来在一个大的搜寻空间内找寻命题的最优解。模拟退火是由S.Kirkpatrick, C.D.Gelatt和M.P.Vecchi在1983年所发明的。V.Černý在1985年也独立发明此演算法。模拟退火算法是解决TSP问题的有效方法之一。

模拟退火的出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法是一种通用的优化算法,其物理退火过程由加温过程、等温过程、冷却过程这三部分组成。(by 百度百科)

本文讨论用python实现简单模拟退火法,来求函数在某个区间范围内的最大/最小值。


1. 模拟退火算法

基本流程图:
这里写图片描述

下面是模拟退火算法的主程序simAnneal.py,实现了算一维,二维及多维函数在给定区间内的最大/最小值。

# -*- coding: utf-8 -*-'''
=========================================
|                kiterun                |
|               2017/08/11              |
|             kiterun@126.com           |
=========================================
'''
from random import random
import math
import sysclass SimAnneal(object):'''Simulated annealing algorithm '''def __init__(self, target_text='min'):self.target_text = target_textdef newVar(self, oldList, T):''':old : list:return : list, new solutions based on old solutions:T   : current temperature'''newList = [i + (random()*2-1) for i in oldList]return newListdef juge(self, func, new, old, T):'''matropolise conditions: to get the maximun or minmun:new : new solution data from self.newX:old : old solution data:T   : current temperature'''dE = func(new) - func(old) if self.target_text == 'max' else func(old) - func(new)if dE >= 0:x, ans = new, func(new)else:if math.exp(dE/T) > random():x, ans = new,func(new)else:x, ans = old, func(old)return [x, ans]class OptSolution(object):'''find the optimal solution.'''def __init__(self, temperature0=100, temDelta=0.98,temFinal=1e-8, Markov_chain=2000, result=0, val_nd=[0]):# initial temperatureself.temperature0 = temperature0# step factor for decreasing temperatureself.temDelta = temDelta# the final temperatureself.temFinal = temFinal# the Markov_chain length (inner loops numbers)self.Markov_chain = Markov_chain# the final resultself.result = result# the initial coordidate values: 1D [0], 2D [0,0] ...self.val_nd = val_nddef mapRange<

这篇关于模拟退火算法求函数最大、小值——python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123119

相关文章

浅析python如何去掉字符串中最后一个字符

《浅析python如何去掉字符串中最后一个字符》在Python中,字符串是不可变对象,因此无法直接修改原字符串,但可以通过生成新字符串的方式去掉最后一个字符,本文整理了三种高效方法,希望对大家有所帮助... 目录方法1:切片操作(最推荐)方法2:长度计算索引方法3:拼接剩余字符(不推荐,仅作演示)关键注意事

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC

Nginx更新SSL证书的实现步骤

《Nginx更新SSL证书的实现步骤》本文主要介绍了Nginx更新SSL证书的实现步骤,包括下载新证书、备份旧证书、配置新证书、验证配置及遇到问题时的解决方法,感兴趣的了解一下... 目录1 下载最新的SSL证书文件2 备份旧的SSL证书文件3 配置新证书4 验证配置5 遇到的http://www.cppc

python版本切换工具pyenv的安装及用法

《python版本切换工具pyenv的安装及用法》Pyenv是管理Python版本的最佳工具之一,特别适合开发者和需要切换多个Python版本的用户,:本文主要介绍python版本切换工具pyen... 目录Pyenv 是什么?安装 Pyenv(MACOS)使用 Homebrew:配置 shell(zsh

Nginx之https证书配置实现

《Nginx之https证书配置实现》本文主要介绍了Nginx之https证书配置的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起... 目录背景介绍为什么不能部署在 IIS 或 NAT 设备上?具体实现证书获取nginx配置扩展结果验证

SpringBoot整合 Quartz实现定时推送实战指南

《SpringBoot整合Quartz实现定时推送实战指南》文章介绍了SpringBoot中使用Quartz动态定时任务和任务持久化实现多条不确定结束时间并提前N分钟推送的方案,本文结合实例代码给大... 目录前言一、Quartz 是什么?1、核心定位:解决什么问题?2、Quartz 核心组件二、使用步骤1

使用Redis实现会话管理的示例代码

《使用Redis实现会话管理的示例代码》文章介绍了如何使用Redis实现会话管理,包括会话的创建、读取、更新和删除操作,通过设置会话超时时间并重置,可以确保会话在用户持续活动期间不会过期,此外,展示了... 目录1. 会话管理的基本概念2. 使用Redis实现会话管理2.1 引入依赖2.2 会话管理基本操作

Python自动化提取多个Word文档的文本

《Python自动化提取多个Word文档的文本》在日常工作和学习中,我们经常需要处理大量的Word文档,本文将深入探讨如何利用Python批量提取Word文档中的文本内容,帮助你解放生产力,感兴趣的小... 目录为什么需要批量提取Word文档文本批量提取Word文本的核心技术与工具安装 Spire.Doc

mybatis-plus分表实现案例(附示例代码)

《mybatis-plus分表实现案例(附示例代码)》MyBatis-Plus是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,为简化开发、提高效率而生,:本文主要介绍my... 目录文档说明数据库水平分表思路1. 为什么要水平分表2. 核心设计要点3.基于数据库水平分表注意事项示例

C#高效实现在Word文档中自动化创建图表的可视化方案

《C#高效实现在Word文档中自动化创建图表的可视化方案》本文将深入探讨如何利用C#,结合一款功能强大的第三方库,实现在Word文档中自动化创建图表,为你的数据呈现和报告生成提供一套实用且高效的解决方... 目录Word文档图表自动化:为什么选择C#?从零开始:C#实现Word文档图表的基本步骤深度优化:C