Redis缓存穿透、缓存击穿与缓存雪崩的详细讲解和案例示范

2024-08-31 05:28

本文主要是介绍Redis缓存穿透、缓存击穿与缓存雪崩的详细讲解和案例示范,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在高并发的电商交易系统中,Redis缓存的使用可以极大地提高系统的性能。然而,缓存机制也面临着一些挑战,尤其是缓存穿透、缓存击穿和缓存雪崩问题。这些问题如果处理不当,可能导致系统的性能大幅下降,甚至出现系统崩溃的情况。本文将详细介绍这些问题及其解决方案,并结合电商交易系统的案例进行示范,提供相应的代码示例。


第一章:Redis缓存穿透

1.1 缓存穿透的定义

缓存穿透是指用户请求的数据在缓存中不存在,并且在数据库中也不存在。由于缓存未命中,每次请求都会直接访问数据库,导致数据库压力骤增,最终可能导致系统崩溃。

1.2 缓存穿透的原因
  1. 用户恶意攻击:攻击者通过大量请求不存在的数据来绕过缓存,直接攻击数据库。
  2. 未正确设置缓存:对于数据库中不存在的值,未设置空缓存,导致每次查询都穿透到数据库。
1.3 解决方案
1.3.1 使用布隆过滤器

布隆过滤器是一种概率型数据结构,能够高效判断一个元素是否在一个集合中存在。布隆过滤器通过多个哈希函数将数据映射到位数组中,以达到快速判断的目的。虽然布隆过滤器存在一定的误判率,但它可以有效防止缓存穿透。

实现代码示例
public class BloomFilterService {private BloomFilter<String> bloomFilter;public BloomFilterService(int expectedInsertions, double fpp) {bloomFilter = BloomFilter.create(Funnels.stringFunnel(Charsets.UTF_8), expectedInsertions, fpp);}public void addToFilter(String key) {bloomFilter.put(key);}public boolean mightContain(String key) {return bloomFilter.mightContain(key);}
}
1.3.2 缓存空对象

对于数据库中不存在的数据,将空对象缓存起来,并设置较短的过期时间。这样可以避免大量查询穿透到数据库。

实现代码示例
public String getProductInfo(String productId) {String cacheKey = "product:" + productId;String productInfo = redisTemplate.opsForValue().get(cacheKey);if (productInfo != null) {return productInfo;}// 查询数据库Product product = productRepository.findById(productId);if (product == null) {// 数据库中不存在,缓存空值redisTemplate.opsForValue().set(cacheKey, "", 60, TimeUnit.SECONDS);return null;}// 存在,缓存数据redisTemplate.opsForValue().set(cacheKey, product.toString(), 10, TimeUnit.MINUTES);return product.toString();
}
1.3.3 图示

在这里插入图片描述

1.4 电商系统中的案例

在电商系统中,用户请求某个商品详情,而该商品可能已经下架或者从未存在。在这种情况下,通过使用布隆过滤器和缓存空对象,能够有效防止系统缓存穿透。


第二章:Redis缓存击穿

2.1 缓存击穿的定义

缓存击穿是指缓存中某个热点数据在到期失效的瞬间,有大量的并发请求同时访问该数据,由于缓存失效,这些请求都会穿透到数据库,导致数据库负载剧增,甚至可能导致系统崩溃。

2.2 缓存击穿的原因
  1. 高并发访问:某些热点数据由于频繁访问,可能在缓存失效的瞬间引发大量并发请求直接访问数据库。
  2. 缓存未提前续期:如果没有在缓存即将失效时提前续期,可能导致缓存击穿。
2.3 解决方案
2.3.1 使用互斥锁(分布式锁)

在高并发场景下,当缓存失效时,只有一个请求能够获取锁,其他请求需要等待,直到锁释放后才能访问数据库并更新缓存。

实现代码示例
public String getProductInfo(String productId) {String cacheKey = "product:" + productId;String productInfo = redisTemplate.opsForValue().get(cacheKey);if (productInfo != null) {return productInfo;}// 获取分布式锁String lockKey = "lock:product:" + productId;boolean isLock = redisTemplate.opsForValue().setIfAbsent(lockKey, "1", 5, TimeUnit.SECONDS);if (isLock) {try {// 查询数据库并更新缓存Product product = productRepository.findById(productId);redisTemplate.opsForValue().set(cacheKey, product.toString(), 10, TimeUnit.MINUTES);return product.toString();} finally {// 释放锁redisTemplate.delete(lockKey);}} else {// 如果没有获取到锁,稍后重试Thread.sleep(100);return getProductInfo(productId);}
}
2.3.2 提前续期

在缓存即将失效时,提前续期缓存数据,以防止缓存失效瞬间的大量并发请求击穿缓存。

实现代码示例
@Scheduled(fixedRate = 5000)
public void refreshHotKeys() {List<String> hotKeys = getHotKeys(); // 获取热点数据的缓存Keyfor (String key : hotKeys) {redisTemplate.expire(key, 10, TimeUnit.MINUTES); // 重新设置过期时间}
}
2.3.3 图示

在这里插入图片描述

2.4 电商系统中的案例

在电商系统中,某些热门商品如秒杀商品会被频繁访问。在缓存失效时,通过分布式锁和提前续期策略,可以有效防止缓存击穿问题。


第三章:Redis缓存雪崩

3.1 缓存雪崩的定义

缓存雪崩是指大量缓存数据在同一时间失效,导致大量请求同时穿透到数据库,造成数据库压力过大,可能导致系统不可用。

3.2 缓存雪崩的原因
  1. 缓存集中失效:由于缓存数据的过期时间设定不合理,大量缓存数据在同一时间失效,导致请求集中穿透到数据库。
  2. 系统重启:如果Redis服务因故障重启,可能导致大量缓存数据失效。
3.3 解决方案
3.3.1 缓存数据过期时间设置为随机值

通过为缓存数据设置随机的过期时间,避免大量缓存数据在同一时间失效。

实现代码示例
public void cacheProductInfo(String productId, String productInfo) {int expireTime = 10 + new Random().nextInt(5); // 随机生成10-15分钟的过期时间String cacheKey = "product:" + productId;redisTemplate.opsForValue().set(cacheKey, productInfo, expireTime, TimeUnit.MINUTES);
}
3.3.2 预热缓存

在系统上线或重启时,提前将热点数据加载到缓存中,防止大量请求瞬间击穿缓存。

实现代码示例
public void cachePreheat() {List<String> hotProductIds = productRepository.getHotProductIds();for (String productId : hotProductIds) {String productInfo = productRepository.findById(productId).toString();redisTemplate.opsForValue().set("product:" + productId, productInfo, 10, TimeUnit.MINUTES);}
}
3.3.3 图示

在这里插入图片描述

第四章:总结

通过本文的详细讲解,我们对Redis缓存穿透、缓存击穿和缓存雪崩三大问题有了深入的理解。我们使用布隆过滤器和缓存空对象来防止缓存穿透,通过分布式锁和提前续期防止缓存击穿,并通过设置随机过期时间和缓存预热来防止缓存雪崩。每种问题都有其特定的解决方案,通过这些解决方案,我们能够有效提高系统的稳定性和性能。

通过图示,我们直观地展示了这些解决方案的实现过程,这有助于更好地理解和应用这些技术。在实际的电商系统中,合理运用这些技术能够极大提升系统的抗压能力,确保在高并发场景下的稳定性。

希望这篇文章能为您在实际项目中处理Redis缓存问题提供有益的参考。

这篇关于Redis缓存穿透、缓存击穿与缓存雪崩的详细讲解和案例示范的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123007

相关文章

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis延迟队列的实现示例

《Redis延迟队列的实现示例》Redis延迟队列是一种使用Redis实现的消息队列,本文主要介绍了Redis延迟队列的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录一、什么是 Redis 延迟队列二、实现原理三、Java 代码示例四、注意事项五、使用 Redi

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

redis-cli命令行工具的使用小结

《redis-cli命令行工具的使用小结》redis-cli是Redis的命令行客户端,支持多种参数用于连接、操作和管理Redis数据库,本文给大家介绍redis-cli命令行工具的使用小结,感兴趣的... 目录基本连接参数基本连接方式连接远程服务器带密码连接操作与格式参数-r参数重复执行命令-i参数指定命

深入理解Redis大key的危害及解决方案

《深入理解Redis大key的危害及解决方案》本文主要介绍了深入理解Redis大key的危害及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、背景二、什么是大key三、大key评价标准四、大key 产生的原因与场景五、大key影响与危

Java操作PDF文件实现签订电子合同详细教程

《Java操作PDF文件实现签订电子合同详细教程》:本文主要介绍如何在PDF中加入电子签章与电子签名的过程,包括编写Word文件、生成PDF、为PDF格式做表单、为表单赋值、生成文档以及上传到OB... 目录前言:先看效果:1.编写word文件1.2然后生成PDF格式进行保存1.3我这里是将文件保存到本地后

windows系统下shutdown重启关机命令超详细教程

《windows系统下shutdown重启关机命令超详细教程》shutdown命令是一个强大的工具,允许你通过命令行快速完成关机、重启或注销操作,本文将为你详细解析shutdown命令的使用方法,并提... 目录一、shutdown 命令简介二、shutdown 命令的基本用法三、远程关机与重启四、实际应用

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略