第一章:数据处理与特征工程的高阶技巧

2024-08-31 02:44

本文主要是介绍第一章:数据处理与特征工程的高阶技巧,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.1 数据预处理的深度优化

高效处理大规模数据的Python代码示例:使用Dask与Vaex进行数据分片、并行处理

1. Dask:Pandas的分布式“兄弟”

2. Vaex:内存敏感的高速数据框架

数据去重、缺失值填充的优化策略:结合Spark DataFrame和SQL优化

1.2 自动化与智能特征工程

使用Featuretools进行自动特征生成:代码示例与性能对比

应用深度学习模型进行特征提取:使用TensorFlow/Keras的自编码器示例

1.3 异常检测与数据增强

时间序列异常检测:PyOD、Isolation Forest等方法的对比与实现

数据增强技术在不平衡数据集处理中的应用:SMOTE、GANs的代码示例

结语


数据处理与特征工程无疑是数据分析中的“重头戏”,对于高阶数据分析师而言,这不仅仅是数据清洗与特征选择的问题,更是如何通过高效、智能化的手段提取、优化和增强数据特征的过程。在这个章节中,我们将深入探讨数据预处理的深度优化、高阶特征工程的自动化实现,以及异常检测和数据增强的前沿技术。代码、实战与优化策略一个都不会少,让你在应对复杂的数据任务时,游刃有余。


1.1 数据预处理的深度优化

数据预处理是数据分析中的第一步,也是极其耗时的一步。如何在面对海量数据时高效处理?如何让重复值、缺失值不再成为困扰?这里我们不谈简单的Pandas操作,而是直接上Dask、Vaex这些能够处理亿级数据的工具,给你带来速度与性能上的极致提升。

高效处理大规模数据的Python代码示例:使用Dask与Vaex进行数据分片、并行处理
1. Dask:Pandas的分布式“兄弟”

Dask 是一个并行计算库,它可以分布式地处理大规模数据集,且兼容Pandas的API。这意味着你可以将熟悉的Pandas代码直接迁移到Dask,并享受多核并行、分布式计算的加持。

import dask.dataframe as dd# 加载大规模数据
df = dd.read_csv('large_dataset.csv')# 数据分片与并行处理示例
df['processed_col'] = df['original_col'].apply(lambda x: complex_function(x), meta=('x', 'f8'))# 计算结果
result = df.compute()  # Dask在需要时才会触发计算
print(result.head())

在上述代码中,Dask的最大亮点是“延迟计算”,它不会在每次操作后立即计算结果,而是构建一个任务图,直到需要时才会执行。这样不仅节省内存,还大大提升了速度。

2. Vaex:内存敏感的高速数据框架

Vaex是另一款高性能数据处理库,专为处理不能完全加载到内存的数据而设计。它通过内存映射技术,可以在不加载数据到内存的情况下进行计算,速度极快,尤其适合处理10亿行以上的数据集。

import vaex# 加载数据
df = vaex.open('large_dataset.hdf5')# 高效计算表达式
df['log_transformed'] = df['original_col'].log()# 过滤与分组统计
filtered_df = df[df['value'] > 0]
grouped_stats = filtered_df.groupby(by='category', agg={'mean_value': vaex.agg.mean('value')})print(grouped_stats)

与Dask不同,Vaex专注于内存效率,并提供了非常强大的统计分析和数据可视化功能,处理速度通常是Pandas的数十倍,特别是在大量计算场景下表现卓越。

数据去重、缺失值填充的优化策略:结合Spark DataFrame和SQL优化

在数据预处理中,去重和缺失值填充是非常基础但却容易成为性能瓶颈的步骤。对于大规模数据,我们可以借助Spark的分布式计算能力,通过SQL优化策略来实现。

from pyspark.sql import SparkSession
from pyspark.sql.functions import col, count, when, isnan, mean# 创建Spark会话
spark = SparkSession.builder.master("local").appName("Data Cleaning").getOrCreate()# 加载数据
df = spark.read.csv('large_dataset.csv', header=True, inferSchema=True)# 缺失值统计
missing_counts = df.select([count(when(isnan(c) | col(c).isNull(), c)).alias(c) for c in df.columns])
missing_counts.show()# 缺失值填充
filled_df = df.na.fill({'numeric_col': 0, 'string_col': 'missing'})# 去重
deduped_df = filled_df.dropDuplicates(['unique_identifier'])# 查看结果
deduped_df.show()

在上面的代码中,Spark不仅能通过分布式架构处理TB级数据,还能与SQL查询结合,充分利用索引和内存优化来提升去重与填充的效率。


1.2 自动化与智能特征工程

自动化特征工程是数据科学的“加速器”。在这部分,我们将重点介绍如何利用Featuretools进行自动特征生成,以及如何通过深度学习模型实现智能化的特征提取。

使用Featuretools进行自动特征生成:代码示例与性能对比

Featuretools是一款用于自动特征工程的开源工具,能够快速从原始数据中生成大量新特征,特别适用于结构化数据。它基于“深度特征合成”原理,能够自动组合现有特征来生成新的高阶特征。

import featuretools as ft# 创建实体集
es = ft.EntitySet(id='transactions')# 加载数据并定义实体
es = es.entity_from_dataframe(entity_id='transactions', dataframe=df, index='transaction_id', time_index='transaction_time')# 自动生成新特征
feature_matrix, feature_defs = ft.dfs(entityset=es, target_entity='transactions')# 查看生成的新特征
print(feature_matrix.head())

自动特征生成的最大优势在于速度和规模:手动生成特征需要耗费大量的时间和经验,而Featuretools可以在几分钟内生成成千上万的特征。尽管生成的特征可能需要后续筛选和调优,但对于大规模数据分析来说,它是非常高效的“特征生产线”。

应用深度学习模型进行特征提取:使用TensorFlow/Keras的自编码器示例

除了规则生成特征,我们还可以借助深度学习模型,特别是自编码器(Autoencoder)来进行特征提取。自编码器可以自动从高维数据中提取低维、有意义的特征,对于图像、文本等复杂数据特别有效。

from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense# 自编码器结构
input_dim = df.shape[1]
input_layer = Input(shape=(input_dim,))
encoded = Dense(64, activation='relu')(input_layer)
encoded = Dense(32, activation='relu')(encoded)
decoded = Dense(64, activation='relu')(encoded)
decoded = Dense(input_dim, activation='sigmoid')(decoded)# 构建自编码器模型
autoencoder = Model(inputs=input_layer, outputs=decoded)
autoencoder.compile(optimizer='adam', loss='mse')# 训练自编码器
autoencoder.fit(df, df, epochs=50, batch_size=256, shuffle=True, validation_split=0.2)# 提取中间层特征
encoder = Model(inputs=input_layer, outputs=encoded)
features = encoder.predict(df)
print(features.shape)

自编码器通过非监督学习,从原始数据中提取压缩的、去噪的特征,并可以有效保留数据的本质结构,是高维数据特征提取的利器。


1.3 异常检测与数据增强

在实际业务中,数据异常往往意味着潜在的问题或机会。如何快速识别这些异常点,并通过数据增强技术来应对不平衡数据,是分析师们需要掌握的高级技能。

时间序列异常检测:PyOD、Isolation Forest等方法的对比与实现

异常检测是时间序列分析中的一大难题,我们可以使用开源库PyOD来集成多种检测算法,如Isolation Forest、LOF等,对异常数据进行识别。

from pyod.models.iforest import IForest# 训练异常检测模型
clf = IForest(contamination=0.1)
clf.fit(X_train)# 检测异常
y_train_pred = clf.labels_  # 0: 正常, 1: 异常
print(y_train_pred)

Isolation Forest通过构建随机决策树来隔离异常点,效率高且易于实现。对于更复杂的异常检测需求,可以结合LSTM、AutoEncoder等深度学习方法,进一步提升检测精度。

数据增强技术在不平衡数据集处理中的应用:SMOTE、GANs的代码示例

在不平衡数据集中,少数类数据的匮乏会严重影响模型的表现。数据增强技术如SMOTE(合成少数类过采样技术)和生成对抗网络(GAN)是解决这一问题的利器。

from imblearn.over_sampling import SMOTE
from sklearn.datasets import make_classification# 创建不平衡数据集
X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, weights=[0.9, 0.1])# 使用SMOTE进行数据增强
smote = SMOTE(sampling_strategy='minority')
X_resampled, y_resampled = smote.fit_resample(X, y)print(f'原始数据大小: {X.shape}, 增强后数据大小: {X_resampled.shape}')

SMOTE通过线性插值生成新的少数类样本,简单而高效。而GANs则通过生成器-判别器对抗训练,可以生成更为复杂和真实的数据,从而大幅度提升少数类样本的质量。


结语

在本章中,我们探讨了数据预处理与特征工程的高阶技巧,从数据分片与并行处理,到智能化特征生成,再到异常检测与数据增强,每一项技术都充满了实战价值。在数据分析的世界里,掌握这些工具与技巧不仅能够让你在性能和效率上脱颖而出,还能让你的分析成果更上一层楼。接下来,我们将深入探索批处理与流处理的融合,敬请期待!

这篇关于第一章:数据处理与特征工程的高阶技巧的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122664

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

滚雪球学Java(87):Java事务处理:JDBC的ACID属性与实战技巧!真有两下子!

咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE啦,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯,别被干货淹没了哦~ 🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,助你一臂之力,带你早日登顶🚀,欢迎大家关注&&收藏!持续更新中,up!up!up!! 环境说明:Windows 10

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

Jenkins构建Maven聚合工程,指定构建子模块

一、设置单独编译构建子模块 配置: 1、Root POM指向父pom.xml 2、Goals and options指定构建模块的参数: mvn -pl project1/project1-son -am clean package 单独构建project1-son项目以及它所依赖的其它项目。 说明: mvn clean package -pl 父级模块名/子模块名 -am参数

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

**爬取豆瓣电影信息,分析近年电影行业的发展情况** 本文是完整的数据分析展现,代码有完整版,包含豆瓣电影爬取的具体方式【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】   最近MBA在学习《商业数据分析》,大实训作业给了数据要进行数据分析,所以先拿豆瓣电影练练手,网络上爬取豆瓣电影TOP250较多,但对于豆瓣电影全数据的爬取教程很少,所以我自己做一版。 目

小技巧绕过Sina Visitor System(新浪访客系统)

0x00 前言 一直以来,爬虫与反爬虫技术都时刻进行着博弈,而新浪微博作为一个数据大户更是在反爬虫上不遗余力。常规手段如验证码、封IP等等相信很多人都见识过…… 当然确实有需要的话可以通过新浪开放平台提供的API进行数据采集,但是普通开发者的权限比较低,限制也比较多。所以如果只是做一些简单的功能还是爬虫比较方便~ 应该是今年的早些时候,新浪引入了一个Sina Visitor Syst

PMP–一、二、三模–分类–14.敏捷–技巧–看板面板与燃尽图燃起图

文章目录 技巧一模14.敏捷--方法--看板(类似卡片)1、 [单选] 根据项目的特点,项目经理建议选择一种敏捷方法,该方法限制团队成员在任何给定时间执行的任务数。此方法还允许团队提高工作过程中问题和瓶颈的可见性。项目经理建议采用以下哪种方法? 易错14.敏捷--精益、敏捷、看板(类似卡片)--敏捷、精益和看板方法共同的重点在于交付价值、尊重人、减少浪费、透明化、适应变更以及持续改善等方面。

《计算机视觉工程师养成计划》 ·数字图像处理·数字图像处理特征·概述~

1 定义         从哲学角度看:特征是从事物当中抽象出来用于区别其他类别事物的属性集合,图像特征则是从图像中抽取出来用于区别其他类别图像的属性集合。         从获取方式看:图像特征是通过对图像进行测量或借助算法计算得到的一组表达特性集合的向量。 2 认识         有些特征是视觉直观感受到的自然特征,例如亮度、边缘轮廓、纹理、色彩等。         有些特征需要通