【复杂系统系列(初级)】自动调节动态平衡模型——生物体的稳态机制

本文主要是介绍【复杂系统系列(初级)】自动调节动态平衡模型——生物体的稳态机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【通俗理解】自动调节动态平衡模型——生物体的稳态机制

关键词提炼

#自动调节 #动态平衡 #生物体稳态 #反馈机制 #体温调节 #微分方程模型

第一节:自动调节动态平衡模型的类比与核心概念

1.1 自动调节动态平衡模型的类比

自动调节动态平衡模型可以被视为生物体内部的“自动调温器”,它不断地监测和调整生物体的状态,使其保持在一个稳定的范围内。就像我们家里的空调,当室内温度升高时,空调会自动制冷;当室内温度降低时,空调会自动制热,从而保持室内的温度恒定。

在这里插入图片描述

1.2 相似公式比对

  • 简单反馈控制 u ( t ) = K ( r − x ( t ) ) u(t) = K(r - x(t)) u(t)=K(rx(t)),描述了一个简单的反馈控制过程,其中 u ( t ) u(t) u(t)是控制输入, K K K是反馈增益, r r r是目标状态, x ( t ) x(t) x(t)是当前状态。
  • 自动调节动态平衡模型 d x ( t ) d t = K ( r − x ( t ) ) \frac{dx(t)}{dt} = K(r - x(t)) dtdx(t)=K(rx(t)),则是一个微分方程,它描述了生物体状态 x ( t ) x(t) x(t)随时间 t t t的自动调节作用,更加贴近生物体的实际调节过程。

第二节:自动调节动态平衡模型的核心概念与应用

2.1 核心概念

核心概念定义比喻或解释
反馈机制系统通过监测当前状态与目标状态的差异,并作出相应调整的过程。就像空调的温度传感器,不断监测室内温度并调整制冷/制热。
目标状态 r r r系统希望维持的稳定状态。就像空调设定的温度。
当前状态 x ( t ) x(t) x(t)系统在时刻 t t t的实际状态。就像空调当前监测到的室内温度。
反馈增益 K K K系统对状态差异的敏感程度,决定了调整的力度。就像空调的温度调节灵敏度,决定了制冷/制热的快慢。

2.2 优势与劣势

  • 优势:能够解释生物体如何在面对外界干扰时,通过自动调节机制恢复平衡,为生物学研究提供了新的视角和方法。
  • 劣势:在某些病理状态或极端环境下,反馈机制可能失效,导致模型无法解释系统无法恢复平衡的情况。

2.3 与生物体稳态的类比

自动调节动态平衡模型在生物体稳态研究中扮演着“导航仪”的角色,它能够指引生物体在面对各种外界干扰时,如何调整自身状态以保持稳态,就像导航仪指引我们如何到达目的地一样。

第三节:公式探索与推演运算

3.1 自动调节动态平衡模型的基本形式

自动调节动态平衡模型的基本形式为:

d x ( t ) d t = K ( r − x ( t ) ) \frac{dx(t)}{dt} = K(r - x(t)) dtdx(t)=K(rx(t))

其中, x ( t ) x(t) x(t)代表当前的系统状态, r r r是目标状态, K K K是反馈增益系数。

3.2 具体实例与推演

以体温调节为例,当人体暴露在寒冷环境中时,会通过颤抖产生热量来维持体温。假设目标体温 r r r为37℃,当前体温 x ( t ) x(t) x(t)为36℃,反馈增益 K K K为0.5,那么根据自动调节动态平衡模型,体温的变化率 d x ( t ) d t \frac{dx(t)}{dt} dtdx(t)为:

d x ( t ) d t = 0.5 × ( 37 − 36 ) = 0.5 \frac{dx(t)}{dt} = 0.5 \times (37 - 36) = 0.5 dtdx(t)=0.5×(3736)=0.5

这意味着体温将以0.5℃/单位时间的速度上升,直到达到目标体温37℃。

第四节:相似公式比对

  • 简单线性模型自动调节动态平衡模型

    • 共同点:都描述了变量之间的关系。
    • 不同点:简单线性模型描述的是变量之间的静态关系,而自动调节动态平衡模型则描述了变量随时间的动态变化关系。
  • PID控制器自动调节动态平衡模型中的反馈机制

    • 相似点:PID控制器也是一种反馈控制系统,通过比例、积分、微分三种控制作用来调整系统状态。
    • 差异:PID控制器是工程控制中的经典模型,而自动调节动态平衡模型则更侧重于生物体的自我调节现象。

第五节:核心代码与可视化

这段代码使用scipy.integrate.solve_ivp函数求解了自动调节动态平衡模型,并绘制了系统状态随时间的变化曲线。

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.integrate import solve_ivp# Define the automatic regulation model
def auto_regulation(t, x):r = 37  # Target stateK = 0.5  # Feedback gaindxdt = K * (r - x)return dxdt# Initial condition
x0 = 36  # Initial state
t_span = (0, 10)  # Time span
t_eval = np.linspace(t_span[0], t_span[1], 100)  # Time points# Solve the differential equation
sol = solve_ivp(auto_regulation, t_span, [x0], t_eval=t_eval)# Visualize the results and beautify with Seaborn
sns.set_theme(style="whitegrid")
plt.plot(sol.t, sol.y[0], label='System State x(t)')
plt.xlabel('Time t')
plt.ylabel('System State x')
plt.title('Automatic Regulation of System State')
plt.legend()# Annotate important regions
plt.annotate('Initial State', xy=(0, x0), xytext=(0.5, 0.8), textcoords='axes fraction',bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.5),arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0'))plt.annotate('Target State', xy=(np.argmax(np.isclose(sol.y[0], r, atol=0.1)), r), xytext=(0.6, 0.6), textcoords='axes fraction',bbox=dict(boxstyle='round,pad=0.5', fc='green', alpha=0.5),arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0'))plt.show()# Printing more detailed output information
print("System state change plot has been generated and displayed. \nThe plot illustrates the automatic regulation of system state x(t) over time t, \nmodeled using the Automatic Regulation Dynamic Balance Model. The x-axis represents time, \nand the y-axis represents the system state x.")

这段代码将展示系统状态如何随时间变化,并标注出初始状态和目标状态,帮助读者更直观地理解自动调节动态平衡模型的工作原理。

在这里插入图片描述

这篇关于【复杂系统系列(初级)】自动调节动态平衡模型——生物体的稳态机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1121968

相关文章

JAVA线程的周期及调度机制详解

《JAVA线程的周期及调度机制详解》Java线程的生命周期包括NEW、RUNNABLE、BLOCKED、WAITING、TIMED_WAITING和TERMINATED,线程调度依赖操作系统,采用抢占... 目录Java线程的生命周期线程状态转换示例代码JAVA线程调度机制优先级设置示例注意事项JAVA线程

Java中自旋锁与CAS机制的深层关系与区别

《Java中自旋锁与CAS机制的深层关系与区别》CAS算法即比较并替换,是一种实现并发编程时常用到的算法,Java并发包中的很多类都使用了CAS算法,:本文主要介绍Java中自旋锁与CAS机制深层... 目录1. 引言2. 比较并交换 (Compare-and-Swap, CAS) 核心原理2.1 CAS

Spring Boot 集成 mybatis核心机制

《SpringBoot集成mybatis核心机制》这篇文章给大家介绍SpringBoot集成mybatis核心机制,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值... 目录Spring Boot浅析1.依赖管理(Starter POMs)2.自动配置(AutoConfigu

Apache服务器IP自动跳转域名的问题及解决方案

《Apache服务器IP自动跳转域名的问题及解决方案》本教程将详细介绍如何通过Apache虚拟主机配置实现这一功能,并解决常见问题,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录​​问题背景​​解决方案​​方法 1:修改 httpd-vhosts.conf(推荐)​​步骤

idea-java序列化serialversionUID自动生成方式

《idea-java序列化serialversionUID自动生成方式》Java的Serializable接口用于实现对象的序列化和反序列化,通过将对象转换为字节流来存储或传输,实现Serializa... 目录简介实现序列化serialVersionUID配置使用总结简介Java.io.Seripyth

Linux下屏幕亮度的调节方式

《Linux下屏幕亮度的调节方式》文章介绍了Linux下屏幕亮度调节的几种方法,包括图形界面、手动调节(使用ACPI内核模块)和外接显示屏调节,以及自动调节软件(CaliseRedshift和Reds... 目录1 概述2 手动调节http://www.chinasem.cn2.1 手动屏幕调节2.2 外接显

C++简单日志系统实现代码示例

《C++简单日志系统实现代码示例》日志系统是成熟软件中的一个重要组成部分,其记录软件的使用和运行行为,方便事后进行故障分析、数据统计等,:本文主要介绍C++简单日志系统实现的相关资料,文中通过代码... 目录前言Util.hppLevel.hppLogMsg.hppFormat.hppSink.hppBuf

Java领域模型示例详解

《Java领域模型示例详解》本文介绍了Java领域模型(POJO/Entity/VO/DTO/BO)的定义、用途和区别,强调了它们在不同场景下的角色和使用场景,文章还通过一个流程示例展示了各模型如何协... 目录Java领域模型(POJO / Entity / VO/ DTO / BO)一、为什么需要领域模

Redis的安全机制详细介绍及配置方法

《Redis的安全机制详细介绍及配置方法》本文介绍Redis安全机制的配置方法,包括绑定IP地址、设置密码、保护模式、禁用危险命令、防火墙限制、TLS加密、客户端连接限制、最大内存使用和日志审计等,通... 目录1. 绑定 IP 地址2. 设置密码3. 保护模式4. 禁用危险命令5. 通过防火墙限制访问6.

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.