Pyspark中的ROW对象使用

2024-08-30 18:04
文章标签 使用 对象 pyspark row

本文主要是介绍Pyspark中的ROW对象使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • Pyspark中的ROW对象使用
    • Row对象介绍
    • Row对象创建
    • 使用Row对象创建DataFrame
    • DataFrame转换为row对象
    • Row对象包含的方法
      • asDict()
      • count()
      • index()

Pyspark中的ROW对象使用

Row对象介绍

在PySpark中,Row对象是DataFrame的基本组成单元,它封装了DataFrame中的每一行数据。每行数据以Row对象的形式存在,其中包含了该行的各个字段值。这些字段值可以像属性一样被访问,使得处理数据变得更加直观和方便。Row对象的创建和使用,使得PySpark能够以更加结构化的方式处理数据,提高了数据处理效率和便利性。

Row对象创建

from pyspark import SparkSession,Row
from pyspark import SparkContext,SparkConfconf = SparkConf()
conf.setAppName('ldsx_create_rdd')
conf.setMaster('local[*]')# 初始化对象
spark = SparkSession.builder.config(conf=conf).getOrCreate()#创建Row对象
fields = ["name", "age", "height"]
schema = Row(*fields)
data1 = schema('ldsx',18,183)
#print内容
Row(name='ldsx', age=18, height=183)#可以直接通过属性访问
data1.name
# 可以通过索引访问
data1[0]

使用Row对象创建DataFrame

Row对象是DataFrame的基本组成单元

# 创建包含row对象的列表
row_list = [schema(1,2,3),schema(2,3,4),schema('ldsx',3,4)]
# 打印信息
>>[Row(name=1, age=2, height=3), Row(name=2, age=3, height=4), Row(name='ldsx', age=3, height=4)]
# 使用row对象创建dataframe
df_1 = spark.createDataFrame(row_list)
df_1.show()
'''
+----+---+------+
|name|age|height|
+----+---+------+
|   1|  2|     3|
|   2|  3|     4|
|ldsx|  3|     4|
+----+---+------+
'''

DataFrame转换为row对象

# 拉去数据到dirver端,在生产中慎用collect
df_1.rdd.collect()
>>[Row(name='Alice', age=25, score=None), Row(name='Bob', age=None, score=30), Row(name='John', age=35, score=40)]
# 可以在map中进行处理 lambda 可以换成专门处理方法,这个传入lambda的x就是row对象
df.rdd.map(lambda x:print(x)).count() #count作用触发map

Row对象包含的方法

asDict()

转换成字典

from pyspark import SparkSession,Row
from pyspark import SparkContext,SparkConf
#创建Row对象
data2 = Row(name='ldsx2', age=18, height=183)#row对象转换dict结构
data1.asDict()
#输出内容
>>{'name': 'ldsx2', 'age': 18, 'height': 183}#row对象中包含row对象 使用True参数内部也会转换
Row(ldsx=1, val=Row(name='a', age=2)).asDict()
>>{'ldsx': 1, 'val': Row(name='a', age=2)}
Row(ldsx=1, val=Row(name='a', age=2)).asDict(True) #True内部也转换
>>{'ldsx': 1, 'val': {'name': 'a', 'age': 2}}

count()

统计值出现的次数

# count只能统计外层值 这种值为Row对象的里面如果值存在1 也不会统计
Row(ldsx=1, val=Row(name='a', age=1),ldsx3=1).count(1) 
#返回值为1的个数
>>2

index()

index(value[, start, stop])

类似python list中index方法
value:要查询的值
start :查找的起始位置 可选
stop:查找的结束位置 可选

#row对象里面值row对象不查询
Row(ldsx=1, val=Row(ldsx=1, age=1),ldsx3=1,ldsx4=1).index(1,1,5)
#返回搜索索引范围1~5中值为1的索引编号
>>2# 查找不存在的元素报错,通过报错也可知index方法是吧row对象当成了一个tuple进行查询的
'''
Row(ldsx=1, val=Row(ldsx=1, age=1),ldsx3=1,ldsx4=1).index(9,1,5)
Traceback (most recent call last):File "/home/ldsx/down_load/pycharm_data/pycharm-community-2024.2/plugins/python-ce/helpers/pydev/_pydevd_bundle/pydevd_exec2.py", line 3, in Execexec(exp, global_vars, local_vars)File "<input>", line 1, in <module>
ValueError: tuple.index(x): x not in tuple
'''
#所以我们肯定也可以使用索引位置进行row对象内的元素访问如
data1 = Row(ldsx=1, val=Row(ldsx=1, age=1),ldsx3=1,ldsx4=1)
data1[0]
#返回
>>1

这篇关于Pyspark中的ROW对象使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1121540

相关文章

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Maven的使用和配置国内源的保姆级教程

《Maven的使用和配置国内源的保姆级教程》Maven是⼀个项目管理工具,基于POM(ProjectObjectModel,项目对象模型)的概念,Maven可以通过一小段描述信息来管理项目的构建,报告... 目录1. 什么是Maven?2.创建⼀个Maven项目3.Maven 核心功能4.使用Maven H

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

Spring Boot 集成 Quartz并使用Cron 表达式实现定时任务

《SpringBoot集成Quartz并使用Cron表达式实现定时任务》本篇文章介绍了如何在SpringBoot中集成Quartz进行定时任务调度,并通过Cron表达式控制任务... 目录前言1. 添加 Quartz 依赖2. 创建 Quartz 任务3. 配置 Quartz 任务调度4. 启动 Sprin

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J

使用Python实现一个优雅的异步定时器

《使用Python实现一个优雅的异步定时器》在Python中实现定时器功能是一个常见需求,尤其是在需要周期性执行任务的场景下,本文给大家介绍了基于asyncio和threading模块,可扩展的异步定... 目录需求背景代码1. 单例事件循环的实现2. 事件循环的运行与关闭3. 定时器核心逻辑4. 启动与停

如何使用Nginx配置将80端口重定向到443端口

《如何使用Nginx配置将80端口重定向到443端口》这篇文章主要为大家详细介绍了如何将Nginx配置为将HTTP(80端口)请求重定向到HTTPS(443端口),文中的示例代码讲解详细,有需要的小伙... 目录1. 创建或编辑Nginx配置文件2. 配置HTTP重定向到HTTPS3. 配置HTTPS服务器

Java使用ANTLR4对Lua脚本语法校验详解

《Java使用ANTLR4对Lua脚本语法校验详解》ANTLR是一个强大的解析器生成器,用于读取、处理、执行或翻译结构化文本或二进制文件,下面就跟随小编一起看看Java如何使用ANTLR4对Lua脚本... 目录什么是ANTLR?第一个例子ANTLR4 的工作流程Lua脚本语法校验准备一个Lua Gramm