CHAMELEON算法原理及Python实践

2024-08-30 11:12

本文主要是介绍CHAMELEON算法原理及Python实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CHAMELEON(变色龙)算法是一种两阶段的层次聚类算法,其原理和特点可以归纳如下:

一、算法概述

CHAMELEON算法通过动态建模的方式,结合了数据的初始划分(通过图划分算法)和一种新颖的层次聚类方案。该算法能够自动地、适应地合并簇,有效处理具有不同形状、大小和密度的簇,即使存在噪声和离群点。

二、算法原理

1. 初始划分阶段

构建K近邻图:首先,算法使用k-近邻算法将数据集构建成一个图。在这个图中,每一个数据点作为一个节点,节点之间通过边相连,边的权重由连接的两个点之间的距离的倒数(或其他相似度度量)表示。

图划分:接着,算法采用图分割技术(如METIS算法)对构建的k近邻图进行分割,生成多个子图,每个子图代表一个初始的子簇。分割的标准是连接不同子图的边的权重之和最小化,以确保子图内的点相似度较高,而子图间的点相似度较低。

2. 层次聚类阶段

定义相似性度量:CHAMELEON算法通过两个关键指标来度量子簇之间的相似性:相对互连性(Relative Interconnectivity, RI)和相对近似性(Relative Closeness, RC)。

相对互连性(RI):衡量两个子簇之间连接的紧密程度,通过连接两个子簇的边的权重之和与各自子簇内部边的权重之和的比值来计算。

相对近似性(RC):衡量两个子簇之间的平均相似度,通过连接两个子簇的边的平均权重与各自子簇内部边的平均权重的比值来计算。

合并子簇:算法反复合并RI和RC都较高的子簇对,直到满足停止条件(如达到预定的簇数量或所有点都合并到一个簇中)。合并过程中,算法会考虑合并后簇的局部特性,确保合并后的簇在形状、大小和密度上与原簇相似。

三、算法特点

适应性:CHAMELEON算法能够自动适应不同形状、大小和密度的簇,无需事先指定簇的数目或形状。

鲁棒性:该算法对噪声和离群点具有一定的鲁棒性,能够在一定程度上减少它们对聚类结果的影响。

复杂性:算法的时间复杂度较高,通常为O(n^2),在数据量较大时可能不太适用。此外,算法中的参数(如k值和minSize)的选择对聚类结果有一定影响,需要仔细调整。

四、应用场景

CHAMELEON算法适用于需要处理复杂形状和密度变化的聚类任务,如社交网络分析、生物信息学中的基因表达数据聚类等。

综上所述,CHAMELEON算法通过结合图划分和层次聚类的思想,以及相对互连性和相对近似性两个关键指标,实现了对复杂数据集的有效聚类。

五、Python实践

CHAMELEON算法是一个相对复杂的聚类算法,它结合了图划分和层次聚类的思想。在Python中实现CHAMELEON算法需要处理图的构建、图划分以及基于特定相似性度量的簇合并。由于Python中没有直接实现CHAMELEON算法的库,我们需要自行编写代码或使用现有的图处理库(如NetworkX)来辅助实现。

以下是一个简化的CHAMELEON算法Python实践框架,包括构建k近邻图、图划分以及基于相对互连性和相对近似性的簇合并步骤的概述。请注意,这只是一个框架,具体实现需要根据你的数据集和需求进行调整。

import numpy as np

import networkx as nx

from scipy.spatial.distance import pdist, squareform

from metis import part_graph  # 假设你有一个METIS的Python接口,实际中可能需要自己编译或使用其他图划分工具

def build_knn_graph(data, k):

    """构建k近邻图"""

    # 计算所有点之间的距离

    dist_matrix = squareform(pdist(data, 'euclidean'))

   

    # 创建图

    G = nx.Graph()

    G.add_nodes_from(range(data.shape[0]))

   

    # 添加边

    for i in range(data.shape[0]):

        sorted_indices = np.argsort(dist_matrix[i])[1:k+1]  # 排除自身

        for j in sorted_indices:

            G.add_edge(i, j, weight=1 / dist_matrix[i, j])  # 使用距离的倒数作为权重

   

    return G

def compute_similarity(G, clusters):

    """计算簇之间的相对互连性和相对近似性"""

    # 这里仅提供框架,具体实现需要根据簇的定义和图的结构来编写

    # 需要计算簇内边的权重之和、簇间边的权重之和以及边的平均权重等

    # ...

    pass

def merge_clusters(clusters, similarities, threshold):

    """合并簇"""

    # 这里仅提供框架,具体实现需要遍历相似性矩阵,根据阈值合并簇

    # ...

    pass

def chameleon_clustering(data, k, num_clusters, min_size=10):

    """CHAMELEON聚类算法"""

    # 构建k近邻图

    G = build_knn_graph(data, k)

   

    # 初始划分(使用METIS或其他图划分算法)

    # 注意:METIS的Python接口可能不存在,这里只是示意

    # 假设part_graph函数返回一个包含簇标签的列表

    cluster_labels = part_graph(G, num_clusters)

    clusters = {label: [node for node, lbl in enumerate(cluster_labels) if lbl == label] for label in set(cluster_labels)}

   

    # 迭代合并簇,直到达到预定簇数量或无法再合并

    while len(clusters) > num_clusters:

        # 计算簇之间的相似性

        similarities = compute_similarity(G, clusters)

       

        # 找到要合并的簇对(这里需要实现一个选择策略)

        # ...

       

        # 合并簇(这里需要实现合并逻辑)

        # ...

       

        # 更新簇集合

        # ...

   

    # 返回最终的簇集合

    return clusters

# 注意:上述代码中的part_graph、compute_similarity和merge_clusters函数都是未实现的,你需要自己根据算法原理编写它们。

# 此外,METIS的Python接口可能需要你自行编译或寻找替代方案。

# 示例用法(假设你已经有了数据和参数)

# data = ...  # 你的数据集

# k = ...  # k近邻的k值

# num_clusters = ...  # 目标簇数量

# clusters = chameleon_clustering(data, k, num_clusters)

# print(clusters)

请注意,上述代码中的part_graph函数是一个假设的METIS图划分算法的Python接口,实际上你可能需要找到METIS的Python绑定或使用其他图划分工具(如Scikit-Learn中的AgglomerativeClustering的connectivity参数,尽管它不完全等同于METIS)。

compute_similarity和merge_clusters函数需要根据CHAMELEON算法的相对互连性和相对近似性度量来具体实现。这些度量通常涉及计算簇内和簇间边的权重统计量,并基于这些统计量来决定哪些簇应该被合并。

最后,由于CHAMELEON算法的时间复杂度较高,你可能需要考虑使用并行计算或优化算法来加速处理过程。

这篇关于CHAMELEON算法原理及Python实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1120656

相关文章

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

python删除xml中的w:ascii属性的步骤

《python删除xml中的w:ascii属性的步骤》使用xml.etree.ElementTree删除WordXML中w:ascii属性,需注册命名空间并定位rFonts元素,通过del操作删除属... 可以使用python的XML.etree.ElementTree模块通过以下步骤删除XML中的w:as

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分