PostgreSQL分区表原理、案例的灵活应用

2024-08-30 11:04

本文主要是介绍PostgreSQL分区表原理、案例的灵活应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PostgreSQL分区表的灵活应用

通常情况下,扫描一个大表会很慢,需要扫描整张表格,如果能够把大表分拆成小表,查询数据的时猴,只扫描数据所属的小表,就能大大降低扫描时间,提高查询速度。

1、简介

PostgreSQL10之前的版本不支持内置分区表,若要实现分区功能,需通过继承的方式实现。

PostgreSQL 10.x 之前的版本提供了一种“手动”方式使用分区表的方式,需要使用继承 + 触发器的来实现分区表,步骤较为繁琐,需要定义附表、子表、子表的约束、创建子表索引,创建分区删除、修改,触发器等。

PostgreSQL 10.x 开始提供了内置分区表(内置是相对于 10.x 之前的手动方式)。内置分区简化了操作,将部分操作内置,最终简单三步就能够创建分区表。但是只支持范围分区(RANGE)和列表分区(LIST),11.x 版本添加了对 HASH 分区。

如果要充分使用分区表的查询优势,必须使用分区时的字段作为过滤条件。
除了在查询上的优势,分区表的使用也可提高删除数据的性能,因为删除一个分区要比删除分区上的所有数据要快的多。这些命令也完全避免了由批量DELETE造成的VACUUM负载。

概念:分区表就是根据分区策略,将数据数据分散到不同的子表中,并通过父表建立关联关系,从而实现数据物理上的分区。

文章目录

  • PostgreSQL分区表的灵活应用
    • 1、简介
    • 2、列表分区
    • 3、范围分区
    • 4、分区管理
    • 5、常用的分表方式,范围分区(包括分区表嵌套,添加、删除分区)
      • 5.1、创建主表
      • 5.2、创建分区表
      • 5.3、创建生成数据的函数
      • 5.4、插入数据到表格
      • 5.5、断开分区
      • 5.6、再创建与原来那个分区表一样的表结构,添加两个分区
      • 5.7、把原先那个总表的2021分区表数据导入现在分区表
      • 5.8、把这个分区表加入到到之前的分区表分区中
      • 5.9、查看当前的分区表信息

2、列表分区

--创建主表
CREATE TABLE info_list (id bigint NOT NULL,protocol varchar(16),ip varchar(50),create_time timestamp
) partition by list(create_time);--创建分区表
create table info_list20200801 partition of info_list for values in ('2020-08-01');
create table info_list20200802 partition of info_list for values in ('2020-08-02');
create table info_list20200803 partition of info_list for values in ('2020-08-03');
--分区表建索引
CREATE INDEX idx_info_list20200801 ON info_list20200801 (create_time);
CREATE INDEX idx_info_list20200802 ON info_list20200802 (create_time);
CREATE INDEX idx_info_list20200803 ON info_list20200803 (create_time);

3、范围分区

注意:如分表的范围为2020-08-01至2020-08-02,则包含前者,不包含后者。相当于时a<=create_time<b。

--1、创建主表(根据create_time进行范围分区)
CREATE TABLE info_range (id bigint NOT NULL,protocol varchar(16),ip varchar(50),create_time timestamp
) partition by range(create_time);
--2、创建分表(根据下面表范围,如果插入2020-08-04,则会报错;如范围为2020-08-01至2020-08-02,则包含前者,不包含后者。相当于时a<=create_time<b;)
create table info_range20200801 partition of info_range for values from ('2020-08-01') to ('2020-08-02');
create table info_range20200802 partition of info_range for values from ('2020-08-02') to ('2020-08-03');
create table info_range20200803 partition of info_range for values from ('2020-08-03') to ('2020-08-04');--3、创建索引
CREATE INDEX idx_info_range20200801 ON info_range20200801 (create_time);
CREATE INDEX idx_info_range20200802 ON info_range20200802 (create_time);
CREATE INDEX idx_info_range20200803 ON info_range20200803 (create_time);

4、分区管理

--断开分区
alter table info_range detach partition info_range20200803;
--连接分区
alter table info_range attach partition info_range20200803 for values from ('2020-08-03') to ('2020-08-04');
--删除分区
drop table info_range20200803;

PG11以上

哈希分区
通过为每个分区指定模数和余数来对表进行分区。每个分区所持有的行都满足:分区键的值除以为其指定的模数将产生为其指定的余数。

5、常用的分表方式,范围分区(包括分区表嵌套,添加、删除分区)

如给大表分区后的某个分区还是特别大,可以弄个二级分区,就像结构树那样嵌套下去(具体做法请参考5.5~5.8)

5.1、创建主表

CREATE TABLE sales_orders (order_id SERIAL,                       -- 订单ID,自动递增customer_id INT NOT NULL,              -- 客户ID,不允许为空order_date DATE NOT NULL,              -- 订单日期,不允许为空amount NUMERIC(10, 2) NOT NULL,        -- 订单金额,精确到小数点后两位,不允许为空status VARCHAR(20),                    -- 订单状态,例如 'completed' 或 'pending'CONSTRAINT sales_orders_pkey PRIMARY KEY (order_id, order_date) -- 设定主键约束,唯一标识每一条订单
)
PARTITION BY RANGE (order_date);          -- 根据订单日期进行范围分区

5.2、创建分区表


CREATE TABLE sales_orders_2021PARTITION OF sales_ordersFOR VALUES FROM ('2021-01-01') TO ('2021-12-31'); -- 2021年的订单分区CREATE TABLE sales_orders_2022PARTITION OF sales_ordersFOR VALUES FROM ('2022-01-01') TO ('2022-12-31'); -- 2022年的订单分区CREATE TABLE sales_orders_2023_q1_q2PARTITION OF sales_ordersFOR VALUES FROM ('2023-01-01') TO ('2023-06-30'); -- 2023年第一季度和第二季度的订单分区CREATE TABLE sales_orders_2023_q3_q4PARTITION OF sales_ordersFOR VALUES FROM ('2023-07-01') TO ('2023-12-31'); -- 2023年第三季度和第四季度的订单分区CREATE TABLE sales_orders_2024PARTITION OF sales_ordersFOR VALUES FROM ('2024-01-01') TO ('2024-12-31'); -- 2024年的订单分区

5.3、创建生成数据的函数

CREATE OR REPLACE FUNCTION insert_random_data(start_date DATE,   -- 起始日期end_date DATE,     -- 结束日期num_rows INT        -- 生成的记录数量
) RETURNS VOID LANGUAGE plpgsql AS $$
BEGININSERT INTO sales_orders (customer_id,   -- 客户IDorder_date,    -- 订单日期amount,        -- 订单金额status         -- 订单状态)SELECT(random() * 1000)::int AS customer_id,           -- 随机生成客户IDgenerate_series(start_date, end_date, '1 day'::interval)::date AS order_date, -- 从起始日期到结束日期生成日期系列(random() * 500 + 50)::numeric(10, 2) AS amount, -- 随机生成订单金额,范围在50到550之间CASE WHEN random() > 0.5 THEN 'completed' ELSE 'pending' END AS status -- 随机生成订单状态FROM generate_series(start_date, end_date, '1 day'::interval) -- 生成日期系列LIMIT num_rows;   -- 限制插入的记录数
END;
$$;

5.4、插入数据到表格

SELECT insert_random_data('2021-01-01', '2021-12-30', 50000);
SELECT insert_random_data('2022-01-01', '2022-12-30', 50000);test=# select count(*) from sales_orders;count  
--------100000
(1 row)test=# 

5.5、断开分区

alter table sales_orders detach partition sales_orders_2021;test=# select count(*) from sales_orders;count 
-------50000
(1 row)

5.6、再创建与原来那个分区表一样的表结构,添加两个分区

这种情况一般应用于,如给大表分区后的某个分区还是特别大,可以弄个二级分区,就像结构树那样嵌套下去

-- 创建2021年订单分区表
CREATE TABLE sales_orders_2021_p (order_id SERIAL,                    -- 订单ID,自动递增customer_id INT NOT NULL,           -- 客户ID,不允许为空order_date DATE NOT NULL,           -- 订单日期,不允许为空amount NUMERIC(10, 2) NOT NULL,     -- 订单金额,精确到小数点后两位,不允许为空status VARCHAR(20),                 -- 订单状态,例如 'completed' 或 'pending'CONSTRAINT sales_orders_2021_p_pkey PRIMARY KEY (order_id, order_date)  -- 主键约束
)
PARTITION BY RANGE (order_date);       -- 根据订单日期进行范围分区--新建两个分区
create table sales_orders_2021_p_1 partition of sales_orders_2021_p for VALUES FROM ('2021-01-01') TO ('2021-5-31');
create table sales_orders_2021_p_2 partition of sales_orders_2021_p for VALUES FROM ('2021-5-31') TO ('2021-12-31');

5.7、把原先那个总表的2021分区表数据导入现在分区表

insert into sales_orders_2021_p select * from sales_orders_2021;

5.8、把这个分区表加入到到之前的分区表分区中

test=# select count(*) from sales_orders;count 
-------50000
(1 row)alter table sales_orders ATTACH PARTITION sales_orders_2021_p FOR VALUES FROM ('2021-01-01') TO ('2021-12-31');test=# select count(*) from sales_orders;count  
--------100000
(1 row)

5.9、查看当前的分区表信息

--以下就是带有二级分区的分区表
test=# \d+ sales_orders;Partitioned table "public.sales_orders"Column    |         Type          | Collation | Nullable |                    Default                     | Storage  | Compression | Stats target | Description 
-------------+-----------------------+-----------+----------+------------------------------------------------+----------+-------------+--------------+-------------order_id    | integer               |           | not null | nextval('sales_orders_order_id_seq'::regclass) | plain    |             |              | customer_id | integer               |           | not null |                                                | plain    |             |              | order_date  | date                  |           | not null |                                                | plain    |             |              | amount      | numeric(10,2)         |           | not null |                                                | main     |             |              | status      | character varying(20) |           |          |                                                | extended |             |              | 
Partition key: RANGE (order_date)
Indexes:"sales_orders_pkey" PRIMARY KEY, btree (order_id, order_date)
Partitions: sales_orders_2021_p FOR VALUES FROM ('2021-01-01') TO ('2021-12-31'), PARTITIONED,sales_orders_2022 FOR VALUES FROM ('2022-01-01') TO ('2022-12-31'),sales_orders_2023_q1_q2 FOR VALUES FROM ('2023-01-01') TO ('2023-06-30'),sales_orders_2023_q3_q4 FOR VALUES FROM ('2023-07-01') TO ('2023-12-31'),sales_orders_2024 FOR VALUES FROM ('2024-01-01') TO ('2024-12-31')
test=# \d+;List of relationsSchema |               Name               |       Type        | Owner | Persistence | Access method |    Size    | Description 
--------+----------------------------------+-------------------+-------+-------------+---------------+------------+-------------public | sales_orders                     | partitioned table | fbase | permanent   |               | 0 bytes    | public | sales_orders_2021                | table             | fbase | permanent   | heap          | 3048 kB    | public | sales_orders_2021_p              | partitioned table | fbase | permanent   |               | 0 bytes    | public | sales_orders_2021_p_1            | table             | fbase | permanent   | heap          | 1248 kB    | public | sales_orders_2021_p_2            | table             | fbase | permanent   | heap          | 1768 kB    | public | sales_orders_2021_p_order_id_seq | sequence          | fbase | permanent   |               | 8192 bytes | public | sales_orders_2022                | table             | fbase | permanent   | heap          | 2976 kB    | public | sales_orders_2023_q1_q2          | table             | fbase | permanent   | heap          | 16 kB      | public | sales_orders_2023_q3_q4          | table             | fbase | permanent   | heap          | 16 kB      | public | sales_orders_2024                | table             | fbase | permanent   | heap          | 16 kB      | public | sales_orders_order_id_seq        | sequence          | fbase | permanent   |               | 8192 bytes | 
(11 rows)

这篇关于PostgreSQL分区表原理、案例的灵活应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1120637

相关文章

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

Redis中Stream详解及应用小结

《Redis中Stream详解及应用小结》RedisStreams是Redis5.0引入的新功能,提供了一种类似于传统消息队列的机制,但具有更高的灵活性和可扩展性,本文给大家介绍Redis中Strea... 目录1. Redis Stream 概述2. Redis Stream 的基本操作2.1. XADD

JSONArray在Java中的应用操作实例

《JSONArray在Java中的应用操作实例》JSONArray是org.json库用于处理JSON数组的类,可将Java对象(Map/List)转换为JSON格式,提供增删改查等操作,适用于前后端... 目录1. jsONArray定义与功能1.1 JSONArray概念阐释1.1.1 什么是JSONA

PostgreSQL中rank()窗口函数实用指南与示例

《PostgreSQL中rank()窗口函数实用指南与示例》在数据分析和数据库管理中,经常需要对数据进行排名操作,PostgreSQL提供了强大的窗口函数rank(),可以方便地对结果集中的行进行排名... 目录一、rank()函数简介二、基础示例:部门内员工薪资排名示例数据排名查询三、高级应用示例1. 每

nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析(结合应用场景)

《nginx-t、nginx-sstop和nginx-sreload命令的详细解析(结合应用场景)》本文解析Nginx的-t、-sstop、-sreload命令,分别用于配置语法检... 以下是关于 nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析,结合实际应

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提