EmguCV学习笔记 C# 8.3 Grabcut法

2024-08-30 10:20

本文主要是介绍EmguCV学习笔记 C# 8.3 Grabcut法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 版权声明:本文为博主原创文章,转载请在显著位置标明本文出处以及作者网名,未经作者允许不得用于商业目的。

EmguCV是一个基于OpenCV的开源免费的跨平台计算机视觉库,它向C#和VB.NET开发者提供了OpenCV库的大部分功能。

教程VB.net版本请访问:EmguCV学习笔记 VB.Net 目录-CSDN博客

教程C#版本请访问:EmguCV学习笔记 C# 目录-CSDN博客

笔者的博客网址:https://blog.csdn.net/uruseibest

教程配套文件及相关说明以及如何获得pdf教程和代码,请移步:EmguCV学习笔记

学习VB.Net知识,请移步: vb.net 教程 目录_vb中如何用datagridview-CSDN博客

 学习C#知识,请移步:C# 教程 目录_c#教程目录-CSDN博客

 

8.3 Grabcut法

GrabCut是一种基于图像分割的技术,它可以用于将图像中的前景和背景分离。在实现中,GrabCut算法通常需要使用高斯混合模型(GMM)来建立前景和背景的概率分布,以便更好的估计像素的标签。同时,还需要考虑如何处理边界处的像素,以避免边界处的像素被错误地分类。GrabCut算法在图像分割中有着广泛的应用,例如人像分割、物体抠图等。

EmguCV使用CvInvoke.GrabCut方法来执行GrabCut算法,该方法声明如下:

public static void GrabCut(

           IInputArray img,

                    IInputOutputArray mask,

                    Rectangle rect,

                    IInputOutputArray bgdModel,

                    IInputOutputArray fgdModel,

                    int iterCount,

           GrabcutInitType type

)

参数说明:

  1. img:输入输出的图像,必须是三通道彩色图像。
  2. mask:指定的掩码图像,必须是单通道灰度图像,并且与输入图像具有相同的尺寸。可以传入0-3的值,分别为:0表示明显为背景的像素、1表示冥相位前景的像素、2表示可能为背景的像素、3表示可能为前景的像素。
  3. rect:指定的矩形框,用于定位大概率可能为前景目标的位置。
  4. bgdModel:背景模型,必须是单通道浮点型Mat。
  5. fgdModel:前景模型,必须是单通道浮点型Mat。
  6. iterCount:迭代次数,用于控制算法的收敛性。
  7. type:GrabCut算法初始化类型,可以选择GrabCutInitType.WithRect或GrabCutInitType.WithMask,分别表示根据提供的矩形初始化或根据掩码初始化。

该方法没有返回值,而是直接在mask图像上进行前景分割操作,最终获得的mask包含0-3的值,含义如参数中说明。

【代码位置:frmChapter8】Button5_Click

        //Grabcut

        private void Button5_Click(object sender, EventArgs e)

        {

            Mat m = new Mat("C:\\learnEmgucv\\tower.jpg", ImreadModes.AnyColor);

            Mat result = new Mat();

            Mat bg = new Mat();

            Mat fg = new Mat();

            Rectangle rect = new Rectangle(80, 30, 680, 450);

            CvInvoke.GrabCut(m, result, rect, bg, fg, 1, GrabcutInitType.InitWithRect);

            //输出的result只有4个值:

            //0:确定背景

            //1:确定前景

            //2:可能背景

            //3:可能前景

            //演示框选范围

            CvInvoke.Rectangle(m, rect, new MCvScalar(255, 255, 255), 1);

            ImageBox1.Image = m;

            //标记区域

            Matrix<byte> matr = new Matrix<byte>(result.Rows, result.Cols);

            result.CopyTo(matr);

            for (int i = 0; i < matr.Cols; i++)

            {

                for (int j = 0; j < matr.Rows; j++)

                {

                    //将确定背景和可能背景标记为0,否则为255

                    if (matr[j, i] == 0 || matr[j, i] == 2)

                        matr[j, i] = 0;

                    else

                        matr[j, i] = 255;

                }

            }

            Mat midm = new Mat();

            midm = matr.Mat;

            //显示标记的图像

            CvInvoke.Imshow("midm", midm);

            //灰度转为彩色

            Mat midm1 = new Mat();

            CvInvoke.CvtColor(midm, midm1, ColorConversion.Gray2Bgr);

            Mat mout = new Mat();

            //And运算

            CvInvoke.BitwiseAnd(m, midm1, mout);

            CvInvoke.Imshow("mout", mout);

        }

输出结果如下图所示:

 

图8-5 Grabcut法分离前景

【代码位置:frmChapter8】Button6_Click

       //Grabcut

        private void Button6_Click(object sender, EventArgs e)

        {

            Mat m = CvInvoke.Imread("C:\\learnEmgucv\\tower.jpg", ImreadModes.Color);

            Mat result = new Mat();

            Mat bg = new Mat();

            Mat fg = new Mat();

            Rectangle rect = new Rectangle(80, 30, 680, 450);

            CvInvoke.GrabCut(m, result, rect, bg, fg, 5, GrabcutInitType.InitWithRect);

            Image<Bgr, byte> src = m.ToImage<Bgr, byte>();

            Image<Bgr, byte> dst = new Image<Bgr, byte>(new Size(src.Width, src.Height));

            Image<Gray, byte> mask = result.ToImage<Gray, byte>();

            //直接操作Image像素点

            for (int i = 0; i < src.Rows; i++)

            {

                for (int j = 0; j < src.Cols; j++)

                {

                    //如果是确定前景和可能前景,直接保留原像素点颜色,否则为黑色

                    if (mask.Data[i, j, 0] == 1 || mask.Data[i, j, 0] == 3)

                    {

                        dst.Data[i, j, 0] = src.Data[i, j, 0];

                        dst.Data[i, j, 1] = src.Data[i, j, 1];

                        dst.Data[i, j, 2] = src.Data[i, j, 2];

                    }

                    else

                    {

                        dst.Data[i, j, 0] = 0;

                        dst.Data[i, j, 1] = 0;

                        dst.Data[i, j, 2] = 0;

                    }

                }

            }

            ImageBox1.Image = dst;

        }

输出结果如下图所示:

 

图8-6 Grabcut法分离前景

【代码位置:frmChapter8】Button7_Click

        //标记为确定前景,这里使用InitWithMask 参数

        private void Button7_Click(object sender, EventArgs e)

        {

            Mat m = new Mat("c:\\learnEmgucv\\lena.jpg", ImreadModes.AnyColor);

            Mat mask = new Mat();

            Mat bg = new Mat();

            Mat fg = new Mat();

            Rectangle rect = new Rectangle(80, 30, 340, 480);

            //使用前景为全白色

            Mat m1 = new Mat("c:\\learnEmgucv\\lena_fillwhite.jpg", ImreadModes.Grayscale);

            Mat mask1 = new Mat();

            //二值化

            CvInvoke.Threshold(m1, mask1, 250, 1, ThresholdType.Binary);

            CvInvoke.Rectangle(m, rect, new MCvScalar(255, 255, 255), 1);

            //标记之后再调用GrabCut,使用InitWithMask参数

            CvInvoke.GrabCut(m, mask1, rect, bg, fg, 2, GrabcutInitType.InitWithMask);

            Matrix<byte> matrx = new Matrix<byte>(mask1.Rows, mask1.Cols);

            mask1.CopyTo(matrx);

            for (int i = 0; i < matrx.Cols; i++)

                for (int j = 0; j < matrx.Rows; j++)

                    if (matrx[i, j] == 0 || matrx[i, j] == 2)

                        matrx[i, j] = 0;

                    else

                        matrx[i, j] = 255;

            Mat midm2 = new Mat();

            midm2 = matrx.Mat;

            Mat midm1 = new Mat();

            CvInvoke.CvtColor(midm2, midm1, ColorConversion.Gray2Bgr);

            Mat mout = new Mat();

            CvInvoke.BitwiseAnd(m, midm1, mout);

            CvInvoke.Imshow("mout", mout);

        }

输出结果如下图所示:

 

图8-7 Grabcut法分离前景

这篇关于EmguCV学习笔记 C# 8.3 Grabcut法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1120542

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

2. c#从不同cs的文件调用函数

1.文件目录如下: 2. Program.cs文件的主函数如下 using System;using System.Collections.Generic;using System.Linq;using System.Threading.Tasks;using System.Windows.Forms;namespace datasAnalysis{internal static

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识