LuaJit分析(十)luajit自定义修改

2024-08-30 07:04
文章标签 分析 自定义 修改 luajit

本文主要是介绍LuaJit分析(十)luajit自定义修改,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

通过分析luajit字节码文件格式可知,luajit文件由文件头和原型数组组成,而原型又包括原型头和原型体,文件头中包含了字节码文件的一些关键信息,目前的反编译工具根据标准的luajit2.0文件格式解析文件,如果对字节码文件的信息自定义,将直接导致反编译过程中出现异常
下面修改luajit字节码的三点并测试:signature标志、STRIP与BE、opcode顺序

修改signature

标准的luajit字节码的signature为0x1B4C4A,定义在lj_bcdump.h中,定义如下:
#define BCDUMP_HEAD1  0x1b
#define BCDUMP_HEAD2  0x4c
#define BCDUMP_HEAD3  0x4a
直接将其修改成:
#define BCDUMP_HEAD1  0x21
#define BCDUMP_HEAD2  0x3c
#define BCDUMP_HEAD3  0x5a
这样在使用luajit -b命令生成字节码时,signature字段将变成0x213C5A
但是只修改这个地方在文件加载时会报错,因为luajit使用同一个API加载lua脚本文件和luajit字节码文件,在lj_load.c中定义如下:
/* -- Load Lua source code and bytecode ----- */
static TValue *cpparser(lua_State *L, lua_CFunction dummy, void *ud)
{LexState *ls = (LexState *)ud;GCproto *pt;GCfunc *fn;int bc;UNUSED(dummy);cframe_errfunc(L->cframe) = -1;  /* Inherit error function. */bc = lj_lex_setup(L, ls);if (ls->mode && !strchr(ls->mode, bc ? 'b' : 't')) {setstrV(L, L->top++, lj_err_str(L, LJ_ERR_XMODE));lj_err_throw(L, LUA_ERRSYNTAX);}pt = bc ? lj_bcread(ls) : lj_parse(ls);fn = lj_func_newL_empty(L, pt, tabref(L->env));/* Don't combine above/below into one statement. */setfuncV(L, L->top++, fn);return NULL;
}

当bc值为1时,调用lj_bcread读取字节码文件信息,否则调用lj_parse进行源码转换,跟踪进lj_lex_setup函数如下:

int lj_lex_setup(lua_State *L, LexState *ls)
{int header = 0;ls->L = L;ls->fs = NULL;ls->pe = ls->p = NULL;ls->vstack = NULL;ls->sizevstack = 0;ls->vtop = 0;ls->bcstack = NULL;ls->sizebcstack = 0;ls->tok = 0;ls->lookahead = TK_eof;  /* No look-ahead token. */ls->linenumber = 1;ls->lastline = 1;lex_next(ls);  /* Read-ahead first char. */if (ls->c == 0xef && ls->p + 2 <= ls->pe && (uint8_t)ls->p[0] == 0xbb &&(uint8_t)ls->p[1] == 0xbf) {  /* Skip UTF-8 BOM (if buffered). */ls->p += 2;lex_next(ls);header = 1;}if (ls->c == '#') {  /* Skip POSIX #! header line. */do {lex_next(ls);if (ls->c == LEX_EOF) return 0;} while (!lex_iseol(ls));lex_newline(ls);header = 1;}if (ls->c == LUA_SIGNATURE[0]) {  /* Bytecode dump. */if (header) {/* ** Loading bytecode with an extra headeris disabled for security** reasons. This may circumvent the usualcheck for bytecode vs.** Lua code by looking at the first char.Since this is a potential** security violation no attempt is madeto echo the chunkname either. */setstrV(L, L->top++, lj_err_str(L,LJ_ERR_BCBAD));lj_err_throw(L, LUA_ERRSYNTAX);}return 1;}return 0;
}

它通过lex_next函数先处理,当ls->c == LUA_SIGNATURE[0]时,返回1,也就是会读取字节码文件,否则返回0,转换源码文件,这里的ls->表示的是当前字节,初始状态经过lex_next处理时,ls→指向文件的第一个字节,同时看LUA_SIGNATURE在lua.h中定义如下:

#define LUA_SIGNATURE "\033Lua"

可知 LUA_SIGNATURE[0] 为 0x1B,与字节码文件的第一个字节对应,同时可以看到在lj_bcread.c文件的bcread_header函数中是这样判断的:

if (bcread_byte(ls) != BCDUMP_HEAD2 ||bcread_byte(ls) != BCDUMP_HEAD3 ||bcread_byte(ls) != BCDUMP_VERSION) return 0;

由于第一个字节在文件加载时判断过了,因此在读取signature时从第二个字节开始判断,因此需要重新定义LUA_SIGNATURE为:

#define LUA_SIGNATURE "\041Lua"


这里只用保证 LUA_SIGNATURE[0] = BCDUMP_HEAD1即可。

  1. 1反编译修改后字节码文件

Luajit-decomp:报错如下,比较隐蔽,因为luajit -bl命令出错没有生成汇编文件:

Ljd:报错如下,提示magic字段错误,比较明显,不是luajit文件格式:

总结:luajit使用luajit filename命令加载文件时,通过文件第一个字节判断时lua源文件还是luajit字节码文件,源文件进行词法转换,字节码文件调用lj_bcread读取字节码文件内容,并从第二个字节开始校验字节码文件的正确性

   2.修改STRIP与BE

STRIP与BE位于luajit字节码文件头的flags标志中。STRIP在第一位,1表示去除调试信息,0表示包含调试信息。BE在第二位,0表示小端对齐,1表示大端对齐,定义在lj_bcdump.h中如下:

#define BCDUMP_F_BE   0x01
#define BCDUMP_F_STRIP    0x02
#define BCDUMP_F_FFI    0x04
#define BCDUMP_F_FR2    0x08

将STRIP与BE的位置互换,重定义如下:

#define BCDUMP_F_BE   0x02
#define BCDUMP_F_STRIP    0x01
#define BCDUMP_F_FFI    0x04
#define BCDUMP_F_FR2    0x08

2.1反编译修改后字节码文件
Luajit-decomp:同样的错误,反汇编没有内容

Ljd:报错如下,从错误提示可以看出是读取头部的时候出错了

总结:修改后正常编译时,STRIP = 1 ,互换后反编译解析认为BE = 1,会根据大端规则去解析,实际上是小端存储,因此出错,并且解析的过程中认为有调试信息,实际上没有,也会导致出错。当-bg编译时,STRIP = 0,互换后BE =0,默认小端下STRIP=0,因此反编译正常。 

   3.修改opcode顺序

      Luajit字节码文件的字段中存放了该原型的字节码指令,位置为原型体的开始处,luajit每个字节码指令占4字节,在lj_bc.h中定义,共97个:
#define BCDEF(_) \/* Comparison ops. ORDER OPR. */ \_(ISLT, var,  ___,  var,  lt)\_(ISGE, var,  ___,  var,  lt)\_(ISLE, var,  ___,  var,  le)\_(ISGT, var,  ___,  var,  le)\\_(ISEQV,  var,  ___,  var,  eq)\_(ISNEV,  var,  ___,  var,  eq)\_(ISEQS,  var,  ___,  str,  eq)\_(ISNES,  var,  ___,  str,  eq)\_(ISEQN,  var,  ___,  num,  eq)\_(ISNEN,  var,  ___,  num,  eq)\_(ISEQP,  var,  ___,  pri,  eq)\_(ISNEP,  var,  ___,  pri,  eq)\\/* Unary test and copy ops. */ \_(ISTC, dst,  ___,  var,  ___)\_(ISFC, dst,  ___,  var,  ___)\_(IST,  ___,  ___,  var,  ___)\_(ISF,  ___,  ___,  var,  ___)\_(ISTYPE, var,  ___,  lit,  ___)\_(ISNUM,  var,  ___,  lit,  ___)\\/* Unary ops. */ \_(MOV,  dst,  ___,  var,  ___)\_(NOT,  dst,  ___,  var,  ___)\_(UNM,  dst,  ___,  var,  unm)\_(LEN,  dst,  ___,  var,  len)\\/* Binary ops. ORDER OPR. VV last, POW mustbe next. */ \_(ADDVN,  dst,  var,  num,  add)\_(SUBVN,  dst,  var,  num,  sub)\_(MULVN,  dst,  var,  num,  mul)\_(DIVVN,  dst,  var,  num,  div)\_(MODVN,  dst,  var,  num,  mod)\\_(ADDNV,  dst,  var,  num,  add)\_(SUBNV,  dst,  var,  num,  sub)\_(MULNV,  dst,  var,  num,  mul)\_(DIVNV,  dst,  var,  num,  div)\_(MODNV,  dst,  var,  num,  mod)\\_(ADDVV,  dst,  var,  var,  add)\_(SUBVV,  dst,  var,  var,  sub)\_(MULVV,  dst,  var,  var,  mul)\_(DIVVV,  dst,  var,  var,  div)\_(MODVV,  dst,  var,  var,  mod)\\_(POW,  dst,  var,  var,  pow)\_(CAT,  dst,  rbase,  rbase,  concat)\\/* Constant ops. */ \_(KSTR, dst,  ___,  str,  ___)\_(KCDATA, dst,  ___,  cdata,  ___)\_(KSHORT, dst,  ___,  lits, ___)\_(KNUM, dst,  ___,  num,  ___)\_(KPRI, dst,  ___,  pri,  ___)\_(KNIL, base, ___,  base, ___)\\/* Upvalue and function ops. */ \_(UGET, dst,  ___,  uv, ___)\_(USETV,  uv, ___,  var,  ___)\_(USETS,  uv, ___,  str,  ___)\_(USETN,  uv, ___,  num,  ___)\_(USETP,  uv, ___,  pri,  ___)\_(UCLO, rbase,  ___,  jump, ___)\_(FNEW, dst,  ___,  func, gc)\\/* Table ops. */ \_(TNEW, dst,  ___,  lit,  gc)\_(TDUP, dst,  ___,  tab,  gc)\_(GGET, dst,  ___,  str,  index)\_(GSET, var,  ___,  str,  newindex)\_(TGETV,  dst,  var,  var,  index)\_(TGETS,  dst,  var,  str,  index)\_(TGETB,  dst,  var,  lit,  index)\_(TGETR,  dst,  var,  var,  index)\_(TSETV,  var,  var,  var,  newindex)\_(TSETS,  var,  var,  str,  newindex)\_(TSETB,  var,  var,  lit,  newindex)\_(TSETM,  base, ___,  num,  newindex)\_(TSETR,  var,  var,  var,  newindex)\\/* Calls and vararg handling. T = tail call.*/ \_(CALLM,  base, lit,  lit,  call)\_(CALL, base, lit,  lit,  call)\_(CALLMT, base, ___,  lit,  call)\_(CALLT,  base, ___,  lit,  call)\_(ITERC,  base, lit,  lit,  call)\_(ITERN,  base, lit,  lit,  call)\_(VARG, base, lit,  lit,  ___)\_(ISNEXT, base, ___,  jump, ___)\\/* Returns. */ \_(RETM, base, ___,  lit,  ___)\_(RET,  rbase,  ___,  lit,  ___)\_(RET0, rbase,  ___,  lit,  ___)\_(RET1, rbase,  ___,  lit,  ___)\\/* Loops and branches. I/J = interp/JIT,I/C/L = init/call/loop. */ \_(FORI, base, ___,  jump, ___)\_(JFORI,  base, ___,  jump, ___)\\_(FORL, base, ___,  jump, ___)\_(IFORL,  base, ___,  jump, ___)\_(JFORL,  base, ___,  lit,  ___)\\_(ITERL,  base, ___,  jump, ___)\_(IITERL, base, ___,  jump, ___)\_(JITERL, base, ___,  lit,  ___)\\_(LOOP, rbase,  ___,  jump, ___)\_(ILOOP,  rbase,  ___,  jump, ___)\_(JLOOP,  rbase,  ___,  lit,  ___)\\_(JMP,  rbase,  ___,  jump, ___)\\/* Function headers. I/J = interp/JIT, F/V/C= fixarg/vararg/C func. */ \_(FUNCF,  rbase,  ___,  ___,  ___)\_(IFUNCF, rbase,  ___,  ___,  ___)\_(JFUNCF, rbase,  ___,  lit,  ___)\_(FUNCV,  rbase,  ___,  ___,  ___)\_(IFUNCV, rbase,  ___,  ___,  ___)\_(JFUNCV, rbase,  ___,  lit,  ___)\_(FUNCC,  rbase,  ___,  ___,  ___)\_(FUNCCW, rbase,  ___,  ___,  ___)typedef enum {
#define BCENUM(name, ma, mb, mc,mt)  BC_##name,
BCDEF(BCENUM)
#undef BCENUM
BC__MAX
} BCOp;

字节码指令中,第一个字节存放的是opcode,实质是该字节码的opcode在BCOp中的下标,因此修改上述BCDEF宏定义的顺序后,对应字节码opcode的顺序也跟着改变,即生成的字节码文件与标准的字节码文件中指令的opcode会改变

打乱指令顺序后如下(指令顺序随便打乱会影响jit功能:LuaJit中的JIT原理分析):

#define BCDEF(_) \/* Unary test and copy ops. */ \_(ISTC, dst,  ___,  var,  ___) \_(ISFC, dst,  ___,  var,  ___) \_(IST,  ___,  ___,  var,  ___) \_(ISF,  ___,  ___,  var,  ___) \_(ISTYPE, var,  ___,  lit,  ___) \_(ISNUM,  var,  ___,  lit,  ___) \\/* Comparison ops. ORDER OPR. */ \_(ISLT, var,  ___,  var,  lt) \_(ISGE, var,  ___,  var,  lt) \_(ISLE, var,  ___,  var,  le) \_(ISGT, var,  ___,  var,  le) \\_(ISEQV,  var,  ___,  var,  eq) \_(ISNEV,  var,  ___,  var,  eq) \_(ISEQS,  var,  ___,  str,  eq) \_(ISNES,  var,  ___,  str,  eq) \_(ISEQN,  var,  ___,  num,  eq) \_(ISNEN,  var,  ___,  num,  eq) \_(ISEQP,  var,  ___,  pri,  eq) \_(ISNEP,  var,  ___,  pri,  eq) \\/* Unary ops. */ \_(MOV,  dst,  ___,  var,  ___) \_(NOT,  dst,  ___,  var,  ___) \_(UNM,  dst,  ___,  var,  unm) \_(LEN,  dst,  ___,  var,  len) \\/* Upvalue and function ops. */ \_(UGET, dst,  ___,  uv, ___) \_(USETV,  uv, ___,  var,  ___) \_(USETS,  uv, ___,  str,  ___) \_(USETN,  uv, ___,  num,  ___) \_(USETP,  uv, ___,  pri,  ___) \_(UCLO, rbase,  ___,  jump, ___) \_(FNEW, dst,  ___,  func, gc) \\/* Constant ops. */ \_(KSTR, dst,  ___,  str,  ___) \_(KCDATA, dst,  ___,  cdata,  ___) \_(KSHORT, dst,  ___,  lits, ___) \_(KNUM, dst,  ___,  num,  ___) \_(KPRI, dst,  ___,  pri,  ___) \_(KNIL, base, ___,  base, ___) \\/* Calls and vararg handling. T = tail call. */ \_(CALLM,  base, lit,  lit,  call) \_(CALL, base, lit,  lit,  call) \_(CALLMT, base, ___,  lit,  call) \_(CALLT,  base, ___,  lit,  call) \_(ITERC,  base, lit,  lit,  call) \_(ITERN,  base, lit,  lit,  call) \_(VARG, base, lit,  lit,  ___) \_(ISNEXT, base, ___,  jump, ___) \\/* Table ops. */ \_(TNEW, dst,  ___,  lit,  gc) \_(TDUP, dst,  ___,  tab,  gc) \_(GGET, dst,  ___,  str,  index) \_(GSET, var,  ___,  str,  newindex) \_(TGETV,  dst,  var,  var,  index) \_(TGETS,  dst,  var,  str,  index) \_(TGETB,  dst,  var,  lit,  index) \_(TGETR,  dst,  var,  var,  index) \_(TSETV,  var,  var,  var,  newindex) \_(TSETS,  var,  var,  str,  newindex) \_(TSETB,  var,  var,  lit,  newindex) \_(TSETM,  base, ___,  num,  newindex) \_(TSETR,  var,  var,  var,  newindex) \\/* Returns. */ \_(RETM, base, ___,  lit,  ___) \_(RET,  rbase,  ___,  lit,  ___) \_(RET0, rbase,  ___,  lit,  ___) \_(RET1, rbase,  ___,  lit,  ___) \\/* Loops and branches. I/J = interp/JIT, I/C/L = init/call/loop. */ \_(FORI, base, ___,  jump, ___) \_(JFORI,  base, ___,  jump, ___) \\_(FORL, base, ___,  jump, ___) \_(IFORL,  base, ___,  jump, ___) \_(JFORL,  base, ___,  lit,  ___) \\_(ITERL,  base, ___,  jump, ___) \_(IITERL, base, ___,  jump, ___) \_(JITERL, base, ___,  lit,  ___) \\_(LOOP, rbase,  ___,  jump, ___) \_(ILOOP,  rbase,  ___,  jump, ___) \_(JLOOP,  rbase,  ___,  lit,  ___) \\_(JMP,  rbase,  ___,  jump, ___) \\/* Binary ops. ORDER OPR. VV last, POW must be next. */ \_(ADDVN,  dst,  var,  num,  add) \_(SUBVN,  dst,  var,  num,  sub) \_(MULVN,  dst,  var,  num,  mul) \_(DIVVN,  dst,  var,  num,  div) \_(MODVN,  dst,  var,  num,  mod) \\_(ADDNV,  dst,  var,  num,  add) \_(SUBNV,  dst,  var,  num,  sub) \_(MULNV,  dst,  var,  num,  mul) \_(DIVNV,  dst,  var,  num,  div) \_(MODNV,  dst,  var,  num,  mod) \\_(ADDVV,  dst,  var,  var,  add) \_(SUBVV,  dst,  var,  var,  sub) \_(MULVV,  dst,  var,  var,  mul) \_(DIVVV,  dst,  var,  var,  div) \_(MODVV,  dst,  var,  var,  mod) \\_(POW,  dst,  var,  var,  pow) \_(CAT,  dst,  rbase,  rbase,  concat) \\/* Function headers. I/J = interp/JIT, F/V/C = fixarg/vararg/C func. */ \_(FUNCF,  rbase,  ___,  ___,  ___) \_(IFUNCF, rbase,  ___,  ___,  ___) \_(JFUNCF, rbase,  ___,  lit,  ___) \_(FUNCV,  rbase,  ___,  ___,  ___) \_(IFUNCV, rbase,  ___,  ___,  ___) \_(JFUNCV, rbase,  ___,  lit,  ___) \_(FUNCC,  rbase,  ___,  ___,  ___) \_(FUNCCW, rbase,  ___,  ___,  ___)

同时lj_bc.h中指令定义下方的assert语句要保证正确才能编译成功,不改变同一类型指令中的顺序,一般情况下不用修改assert语句,除了LJ_STATIC_ASSERT(((int)BC_ISLT^3) == (int)BC_ISGT);改为LJ_STATIC_ASSERT(((int)BC_ISLT+3) == (int)BC_ISGT);

LJ_STATIC_ASSERT((int)BC_ISEQV+1 == (int)BC_ISNEV);
LJ_STATIC_ASSERT(((int)BC_ISEQV^1) == (int)BC_ISNEV);
LJ_STATIC_ASSERT(((int)BC_ISEQS^1) == (int)BC_ISNES);
LJ_STATIC_ASSERT(((int)BC_ISEQN^1) == (int)BC_ISNEN);
LJ_STATIC_ASSERT(((int)BC_ISEQP^1) == (int)BC_ISNEP);
LJ_STATIC_ASSERT(((int)BC_ISLT^1) == (int)BC_ISGE);
LJ_STATIC_ASSERT(((int)BC_ISLE^1) == (int)BC_ISGT);
LJ_STATIC_ASSERT(((int)BC_ISLT+3) == (int)BC_ISGT);
LJ_STATIC_ASSERT((int)BC_IST-(int)BC_ISTC == (int)BC_ISF-(int)BC_ISFC);
LJ_STATIC_ASSERT((int)BC_CALLT-(int)BC_CALL == (int)BC_CALLMT-(int)BC_CALLM);
LJ_STATIC_ASSERT((int)BC_CALLMT + 1 == (int)BC_CALLT);
LJ_STATIC_ASSERT((int)BC_RETM + 1 == (int)BC_RET);
LJ_STATIC_ASSERT((int)BC_FORL + 1 == (int)BC_IFORL);
LJ_STATIC_ASSERT((int)BC_FORL + 2 == (int)BC_JFORL);
LJ_STATIC_ASSERT((int)BC_ITERL + 1 == (int)BC_IITERL);
LJ_STATIC_ASSERT((int)BC_ITERL + 2 == (int)BC_JITERL);
LJ_STATIC_ASSERT((int)BC_LOOP + 1 == (int)BC_ILOOP);
LJ_STATIC_ASSERT((int)BC_LOOP + 2 == (int)BC_JLOOP);
LJ_STATIC_ASSERT((int)BC_FUNCF + 1 == (int)BC_IFUNCF);
LJ_STATIC_ASSERT((int)BC_FUNCF + 2 == (int)BC_JFUNCF);
LJ_STATIC_ASSERT((int)BC_FUNCV + 1 == (int)BC_IFUNCV);
LJ_STATIC_ASSERT((int)BC_FUNCV + 2 == (int)BC_JFUNCV);

 只是改变指令的顺序,能够正常编译luajit源代码,但是可能运行会出错,因为luajit中存在预先编译的luajit字节码,位于/host/buildvm_libbc.h中,这个文件通过genlibbc.lua脚本生成,下载的源码中已经存在该头文件,正常编译luajit时直接使用,有如下函数已经预编译成了字节码:

static const struct { const char *name; int ofs; } libbc_map[] = {
{"math_deg",0},
{"math_rad",25},
{"string_len",50},
{"table_foreachi",69},
{"table_foreach",136},
{"table_getn",207},
{"table_remove",226},
{"table_move",355},
{NULL,502}
};

字节码如下:

static const uint8_t libbc_code[] = {
#if LJ_FR20,1,2,0,0,1,2,24,1,0,0,76,1,2,0,241,135,158,166,3,220,203,178,130,4,0,1,2,0,0,1,2,24,1,0,0,76,1,2,0,243,244,148,165,20,198,190,199,252,3,0,1,2,0,0,0,3,16,0,5,0,21,1,0,0,76,1,2,0,0,2,10,0,0,0,15,16,0,12,0,16,1,9,0,41,2,1,0,21,3,0,0,41,4,1,0,77,2,8,128,18,6,1,0,18,8,5,0,59,9,5,0,66,6,3,2,10,6,0,0,88,7,1,128,76,6,2,0,79,2,248,127,75,0,1,0,0,2,11,0,0,0,16,16,0,12,0,16,1,9,0,43,2,0,0,18,3,0,0,41,4,0,0,88,5,7,128,18,7,1,0,18,9,5,0,18,10,6,0,66,7,3,2,10,7,0,0,88,8,1,128,76,7,2,0,70,5,3,3,82,5,247,127,75,0,1,0,0,1,2,0,0,0,3,16,0,12,0,21,1,0,0,76,1,2,0,0,2,10,0,0,2,30,16,0,12,0,21,2,0,0,11,1,0,0,88,3,7,128,8,2,0,0,88,3,23,128,59,3,2,0,43,4,0,0,64,4,2,0,76,3,2,0,88,3,18,128,16,1,14,0,41,3,1,0,3,3,1,0,88,3,14,128,3,1,2,0,88,3,12,128,59,3,1,0,22,4,1,1,18,5,2,0,41,6,1,0,77,4,4,128,23,8,1,7,59,9,7,0,64,9,8,0,79,4,252,127,43,4,0,0,64,4,2,0,76,3,2,0,75,0,1,0,0,2,0,5,12,0,0,0,35,16,0,12,0,16,1,14,0,16,2,14,0,16,3,14,0,11,4,0,0,88,5,1,128,18,4,0,0,16,4,12,0,3,1,2,0,88,5,24,128,33,5,1,3,0,2,3,0,88,6,4,128,2,3,1,0,88,6,2,128,4,4,0,0,88,6,9,128,18,6,1,0,18,7,2,0,41,8,1,0,77,6,4,128,32,10,5,9,59,11,9,0,64,11,10,4,79,6,252,127,88,6,8,128,18,6,2,0,18,7,1,0,41,8,255,255,77,6,4,128,32,10,5,9,59,11,9,0,64,11,10,4,79,6,252,127,76,4,2,0,0
#else0,1,2,0,0,1,2, 24,1,0,0,76,1,2,0,241,135,158,166,3,220,203,178,130,4,0,1,2,0,0,1,2,24,1,0,0,76,1,2,0,243,244,148,165,20,198,190,199,252,3,0,1,2,0,0,0,3,16,0,5,0,21,1,0,0,76,1,2,0,0,2,9,0,0,0,15,16,0,12,0,16,1,9,0,41,2,1,0,21,3,0,0,41,4,1,0,77,2,8,128,18,6,1,0,18,7,5,0,59,8,5,0,66,6,3,2,10,6,0,0,88,7,1,128,76,6,2,0,79,2,248,127,75,0,1,0,0,2,10,0,0,0,16,16,0,12,0,16,1,9,0,43,2,0,0,18,3,0,0,41,4,0,0,88,5,7,128,18,7,1,0,18,8,5,0,18,9,6,0,66,7,3,2,10,7,0,0,88,8,1,128,76,7,2,0,70,5,3,3,82,5,247,127,75,0,1,0,0,1,2,0,0,0,3,16,0,12,0,21,1,0,0,76,1,2,0,0,2,10,0,0,2,30,16,0,12,0,21,2,0,0,11,1,0,0,88,3,7,128,8,2,0,0,88,3,23,128,59,3,2,0,43,4,0,0,64,4,2,0,76,3,2,0,88,3,18,128,16,1,14,0,41,3,1,0,3,3,1,0,88,3,14,128,3,1,2,0,88,3,12,128,59,3,1,0,22,4,1,1,18,5,2,0,41,6,1,0,77,4,4,128,23,8,1,7,59,9,7,0,64,9,8,0,79,4,252,127,43,4,0,0,64,4,2,0,76,3,2,0,75,0,1,0,0,2,0,5,12,0,0,0,35,16,0,12,0,16,1,14,0,16,2,14,0,16,3,14,0,11,4,0,0,88,5,1,128,18,4,0,0,16,4,12,0,3,1,2,0,88,5,24,128,33,5,1,3,0,2,3,0,88,6,4,128,2,3,1,0,88,6,2,128,4,4,0,0,88,6,9,128,18,6,1,0,18,7,2,0,41,8,1,0,77,6,4,128,32,10,5,9,59,11,9,0,64,11,10,4,79,6,252,127,88,6,8,128,18,6,2,0,18,7,1,0,41,8,255,255,77,6,4,128,32,10,5,9,59,11,9,0,64,11,10,4,79,6,252,127,76,4,2,0,0
#endif
};

libbc_map中,指定了每个函数字节码的起始位置,根据下一个函数的起始位置,可以计算出函数的占字节码的长度。预编译的字节码区分了FR2和非FR2,区别见 64位与32位字节码区别

libbc_code中存储的每个函数的头部如下:

typedef struct{uchar flags;uchar arguments_size;uchar frame_size;uchar upvalue_size;uleb128 ComplexConstant_size;uleb128 NumericConstant_size;uleb128 ins_size;
}fun_header;

字节码头部存储了函数相关的信息,与luajit字节码文件中原型的头部类似,除了没有原型大小字段,函数头部后面存储的是各个字节码指令,再后面是复杂常量和数值常量,修改luajit中opcode顺序后,需要将这些预编译库函数的指令opcode全部对应修改,替换为修改后的指令集下标,自动替换的Python脚本:

def get_opcode_list(fname):f = open(fname)line = f.readline()opcodes = []while line:index_1 = line.find("_(")if index_1 != -1:index_2 = line.find(",")str_p = line[index_1+2:index_2]opcodes.append(str_p)line = f.readline()return opcodesname_1 = "opcodes_1.txt"
name_2 = "opcodes_2.txt"
opcodes_1 = get_opcode_list(name_1)
opcodes_2 = get_opcode_list(name_2)
def get_replace_code(i):str_s = opcodes_1[i]for k in range(len(opcodes_2)):if opcodes_2[k] == str_s:return kfuncs = [0,1,2,0,0,1,2,24,1,0,0,76,1,2,0,241,135,158,166,3,220,203,178,130,4,0,1,2,0,
0,1,2,24,1,0,0,76,1,2,0,243,244,148,165,20,198,190,199,252,3,0,1,2,0,0,0,3,
16,0,5,0,21,1,0,0,76,1,2,0,0,2,10,0,0,0,15,16,0,12,0,16,1,9,0,41,2,1,0,21,3,
0,0,41,4,1,0,77,2,8,128,18,6,1,0,18,8,5,0,59,9,5,0,66,6,3,2,10,6,0,0,88,7,1,
128,76,6,2,0,79,2,248,127,75,0,1,0,0,2,11,0,0,0,16,16,0,12,0,16,1,9,0,43,2,
0,0,18,3,0,0,41,4,0,0,88,5,7,128,18,7,1,0,18,9,5,0,18,10,6,0,66,7,3,2,10,7,
0,0,88,8,1,128,76,7,2,0,70,5,3,3,82,5,247,127,75,0,1,0,0,1,2,0,0,0,3,16,0,12,
0,21,1,0,0,76,1,2,0,0,2,10,0,0,2,30,16,0,12,0,21,2,0,0,11,1,0,0,88,3,7,128,
8,2,0,0,88,3,23,128,59,3,2,0,43,4,0,0,64,4,2,0,76,3,2,0,88,3,18,128,16,1,14,
0,41,3,1,0,3,3,1,0,88,3,14,128,3,1,2,0,88,3,12,128,59,3,1,0,22,4,1,1,18,5,2,
0,41,6,1,0,77,4,4,128,23,8,1,7,59,9,7,0,64,9,8,0,79,4,252,127,43,4,0,0,64,4,
2,0,76,3,2,0,75,0,1,0,0,2,
0,5,12,0,0,0,35,16,0,12,0,16,1,14,0,16,2,14,0,16,
3,14,0,11,4,0,0,88,5,1,128,18,4,0,0,16,4,12,0,3,1,2,0,88,5,24,128,33,5,1,3,
0,2,3,0,88,6,4,128,2,3,1,0,88,6,2,128,4,4,0,0,88,6,9,128,18,6,1,0,18,7,2,0,
41,8,1,0,77,6,4,128,32,10,5,9,59,11,9,0,64,11,10,4,79,6,252,127,88,6,8,128,
18,6,2,0,18,7,1,0,41,8,255,255,77,6,4,128,32,10,5,9,59,11,9,0,64,11,10,4,79,
6,252,127,76,4,2,0,0]indxs = [0,25,50,69,136,207,226,355]for i in indxs:off = ipos = ipos += 4# 三个uleb128格式长度,第一个为complex常量个数,第二个为数字常量个数,第三个为指令个数nums = funcs[pos]pos += 1while nums >= 0x80:nums = funcs[pos]pos += 1nums = funcs[pos]pos += 1while nums >= 0x80:nums = funcs[pos]pos += 1# pos 位置开始读取指令个数nums = funcs[pos]pos += 1value = numsif value >= 0x80:value = value & 0x7fsh = 0while funcs[pos] > 0x80:sh += 7value = value | ((funcs[pos] & 0x7f) << sh)pos += 1value = value | ((funcs[pos] & 0x7f) << sh)pos += 1# 从pos开始 读取value 个指令for i in range(value):ins = funcs[pos]ins_rep = get_replace_code(ins)funcs[pos] = ins_reppos += 4
print(funcs)

其中funcs中为预编译库函数的字节码,opcodes_1.txt中存放的是原始的BCDEF指令宏定义,opcodes_2.txt中存放的是修改后的BCDEF指令宏定义。用输出的funcs替换原始的libbc_code。

3.1反编译修改后字节码文件

1)标准luajit反汇编

2)Luajit-decomp反编译:

3)Ljd反编译:

修改指令顺序后出错情况难以预测,需要将指令还原才可以正常反汇编或反编译

4、 修改原型头部

原型头部包括了原型的一些基本信息,如原型占字节大小、flags标志、参数个数、frame大小、upvalue个数、复杂常量个数、数值常量个数、指令个数。这里我们把参数个数和upvalue个数互换,把常量个数、指令个数互换。

1) 互换参数个数和upvalue个数

①    在lj_bcread.c中,替换如下:

// numparams = bcread_byte(ls);
// framesize = bcread_byte(ls);
// sizeuv = bcread_byte(ls);
//替换读取顺序sizeuv = bcread_byte(ls);numparams = bcread_byte(ls);framesize = bcread_byte(ls);

 ②    在lj_bcwrite.c中,替换如下:

// *p++ = pt->numparams;
// *p++ = pt->framesize;
// *p++ = pt->sizeuv;
//替换写入顺序
*p++ = pt->sizeuv;
*p++ = pt->numparams;
*p++ = pt->framesize;

2) 替换常量个数和指令个数

①    在lj_bcread.c中,替换如下:

// sizekgc = bcread_uleb128(ls);
// sizekn = bcread_uleb128(ls);
// sizebc = bcread_uleb128(ls) + 1;
//替换读取的顺序sizebc = bcread_uleb128(ls) + 1;sizekgc = bcread_uleb128(ls);sizekn = bcread_uleb128(ls);

 ②    在lj_bcwrite.c中,替换如下:

// p = lj_strfmt_wuleb128(p, pt->sizekgc);
// p = lj_strfmt_wuleb128(p, pt->sizekn);
// p = lj_strfmt_wuleb128(p, pt->sizebc-1);
//替换写入顺序
p = lj_strfmt_wuleb128(p, pt->sizebc-1);
p = lj_strfmt_wuleb128(p, pt->sizekgc);
p = lj_strfmt_wuleb128(p, pt->sizekn);

同样由于预编译了一些字节码,这些字节码的原型头部也要对应修改,这些预编译字节码的加载过程见  LuaJit预编译库函数加载过程 

这篇关于LuaJit分析(十)luajit自定义修改的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1120122

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

修改若依框架Token的过期时间问题

《修改若依框架Token的过期时间问题》本文介绍了如何修改若依框架中Token的过期时间,通过修改`application.yml`文件中的配置来实现,默认单位为分钟,希望此经验对大家有所帮助,也欢迎... 目录修改若依框架Token的过期时间修改Token的过期时间关闭Token的过期时js间总结修改若依

MySQL修改密码的四种实现方式

《MySQL修改密码的四种实现方式》文章主要介绍了如何使用命令行工具修改MySQL密码,包括使用`setpassword`命令和`mysqladmin`命令,此外,还详细描述了忘记密码时的处理方法,包... 目录mysql修改密码四种方式一、set password命令二、使用mysqladmin三、修改u

使用Python在Excel中插入、修改、提取和删除超链接

《使用Python在Excel中插入、修改、提取和删除超链接》超链接是Excel中的常用功能,通过点击超链接可以快速跳转到外部网站、本地文件或工作表中的特定单元格,有效提升数据访问的效率和用户体验,这... 目录引言使用工具python在Excel中插入超链接Python修改Excel中的超链接Python

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

CSS自定义浏览器滚动条样式完整代码

《CSS自定义浏览器滚动条样式完整代码》:本文主要介绍了如何使用CSS自定义浏览器滚动条的样式,包括隐藏滚动条的角落、设置滚动条的基本样式、轨道样式和滑块样式,并提供了完整的CSS代码示例,通过这些技巧,你可以为你的网站添加个性化的滚动条样式,从而提升用户体验,详细内容请阅读本文,希望能对你有所帮助...

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

python修改字符串值的三种方法

《python修改字符串值的三种方法》本文主要介绍了python修改字符串值的三种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录第一种方法:第二种方法:第三种方法:在python中,字符串对象是不可变类型,所以我们没办法直接