Linux进程间的通信(二)管道通信及其实际应用(主要是实际编程应用,底层涉及不太多,想了解底层参考《UNIX环境高级编程》)

本文主要是介绍Linux进程间的通信(二)管道通信及其实际应用(主要是实际编程应用,底层涉及不太多,想了解底层参考《UNIX环境高级编程》),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

简单介绍一下管道的概念及其特性

命名管道

命名管道例程

匿名管道

 匿名管道例程

 Linux管道通信实战演示

1、利用管道建立聊天室,实现两个用户间的发送和接受消息

 2、利用管道进行文件的传输


简单介绍一下管道的概念及其特性

管道是一种进程间通信(IPC)机制,它允许一个进程将数据传递给另一个进程。管道文件可以看作是一个临时的、基于内存的数据通道,数据在其中以先进先出(FIFO)的方式流动。

例如,假设有两个程序 A 和 B,程序 A 产生一些数据,而程序 B 需要使用这些数据。通过创建一个管道,程序 A 可以将数据写入管道,而程序 B 可以从管道中读取这些数据,从而实现了两个程序之间的数据传递。

如果read读取完管道里的数据,管道为空,就会读阻塞

如果write写入的数据大于管道的容量,管道容量满了,就会写阻塞

如果所有指向管道写端的文件描述符都关闭了,而仍然有进程从管道的读端读数据,那么管道中剩余的数据都被读取后,再次read会返回0,就像读到文件末尾一样

如果所有指向管道读端的文件描述符都关闭了,这时有进程向管道的写端write,那么该进程会收到信号SIGPIPE,通常会导致进程异常终止。

参考文献:Linux 的进程间通信:管道 - 知乎 (zhihu.com)

参考文献:linux之《管道》_管道文件-CSDN博客

命名管道

命名管道是真实存在在磁盘中的!

命名管道文件的创建

Linux命令行创建管道文件
mkfifo  <pipename>

函数原型:

#include <sys/types.h>
#include <sys/stat.h>

int mkfifo(const char *pathname, mode_t mode);

pathname:要创建的管道文件名字。
mode:用来规定FIFO的读写权限。

命名管道例程

创建一个命名管道实现两个进程间的通信:

write.c

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>int main()
{// 1.打开管道文件int fd = open("/home/loading/pipetest", O_RDWR);if (fd < 0){perror("打开管道失败\n");return -1;}// 2.写入数据到管道中while (1){printf("请输入写入管道的数据\n");char buf[1024] = {0};scanf("%s", buf);write(fd, buf, strlen(buf));}
}

read.c

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>int main()
{// 1.打开管道文件int fd = open("/home/loading/pipetest", O_RDWR);if (fd < 0){perror("打开管道失败\n");return -1;}// 2.读取管道数据while (1){char buf[1024] = {0};read(fd, buf, 1024);printf("读取到的管道数据 %s\n", buf);}
}

 在运行前需要现在open的路径下mkfifo一个pipe文件,我这里的路径是/home/loading/,根据实际创建

运行时需要打开两个Linux终端,好验证进程间的通信。

匿名管道

没有文件名,在内存中以特殊的文件描述符对的形式存在。

当一个进程调用 pipe 系统调用时,内核会创建一个匿名管道,并返回两个文件描述符,一个用于读操作,一个用于写操作。

通常在父进程中创建管道后,再通过 fork 创建子进程。此时,子进程会继承父进程的文件描述符表,从而父子进程都可以访问这个管道。

匿名管道本身并不占用磁盘或者其他外部存储的空间,在Linux的实现上,它占用的是内存空间。所以,Linux上的匿名管道就是一个操作方式为文件的内存缓冲区。

函数原型
#include <unistd.h>
int pipe(int filedes[2]);

pipefd[0]:管道数据读取端,读取时必须关闭写入端,即close(pipefd[1])
pipefd[1]:管道数据写入端,写入时必须关闭读取端,即close(pipefd[0])

返回值:成功   0  
失败   -1

由于基于fork机制,所以匿名管道只能用于父进程和子进程之间,或者拥有相同祖先的两个子进程之间 (有亲缘关系的进程之间)!

参考文献:Linux进程间通信之管道(pipe)、命名管道(FIFO)与信号(Signal) - as_ - 博客园 (cnblogs.com)

 匿名管道例程
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <unistd.h>
#include <string.h>int main()
{// 1.创建一个匿名管道int pipefd[2] = {0};int ret = pipe(pipefd);if (ret < 0){perror("创建匿名管道失败\n");return -1;}// 2.创建父子进程pid_t pid = fork();if (pid == 0) // 子进程{while (1) // 子进程写入管道{char buf[1024] = {0};printf("请输入想要写入管道的数据\n");scanf("%s", buf);write(pipefd[1], buf, strlen(buf));usleep(50000);	//延时半秒}}if (pid > 0) // 父进程{while (1) // 父进程读管道{char buf[1024] = {0};read(pipefd[0], buf, 1024);printf("读取到的管道数据 %s\n", buf);}}
}
 Linux管道通信实战演示
1、利用管道建立聊天室,实现两个用户间的发送和接受消息

      原理:需要建立两个命名管道实现收发

client1.c

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>int main()
{// 1.打开一个管道文件int fd1 = open("/home/loading/pipe1", O_RDWR);int fd2 = open("/home/loading/pipe2", O_RDWR);if (fd1 < 0){perror("打开管道失败\n");return -1;}if (fd2 < 0){perror("打开管道失败\n");return -1;}pid_t pid1 = fork();// 写数据if (pid1 == 0){while (1){char buf1[1024] = {0};printf("请输入要发送的数据\n");scanf("%s", buf1);// lseek(fd,0,SEEK_SET);write(fd2, buf1, strlen(buf1));}}// 读数据if (pid1 > 0){while (1){char buf[1024] = {0};// lseek(fd,0,SEEK_SET);无论命名还是匿名管道,它的文件描述都没有偏移量的概念,所以不能用lseek进行偏移量调整read(fd1, buf, 1024); // 管道没有数据,则会阻塞等待printf("管道1读取数据 %s\n", buf);}}
}

 client2.c

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>int main()
{// 1.打开一个管道文件int fd1 = open("/home/loading/pipe1", O_RDWR);// 1.打开一个管道文件int fd2 = open("/home/loading/pipe2", O_RDWR);if (fd1 < 0){perror("打开管道失败\n");return -1;}if (fd2 < 0){perror("打开管道失败\n");return -1;}pid_t pid =fork();//写数据if(pid==0){while (1){printf("请输入要发送的数据\n");char buf[1024]={0};scanf("%s", buf);// lseek(fd,0,SEEK_SET);write(fd1, buf, strlen(buf));}}//读数据if(pid>0){while (1){char buf1[1024]={0};// lseek(fd1,0,SEEK_SET);read(fd2, buf1, 1024);// 管道没有数据,则会阻塞等待printf("管道2读取数据 %s\n", buf1);}}}
 2、利用管道进行文件的传输

 send.c

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>// 获取文件的大小
int get_file_size(char *file)
{// 1.打开文件int fd = open(file, O_RDWR);if (fd < 0){perror("");return -1;}// 2.偏移光标到文件末尾int file_size = lseek(fd, 0, SEEK_END);close(fd);return file_size;
}// 发送进程
int main(int argc, char *argv[])
{if (argc != 2){printf("请输入需要发送的文件名\n");return 0;}// 1.打开发送的文件int fd = open(argv[1], O_RDWR);if (fd < 0){perror("");return -1;}// 2.打开管道文件int pipe_fd = open("/home/loading/pipe", O_RDWR);if (pipe_fd < 0){perror("");return -1;}// 3.发送文件大小给接收端int file_size = get_file_size(argv[1]);char head[1024] = {0};sprintf(head, "%d", file_size);write(pipe_fd, head, strlen(head));// 休眠等待客户端应答sleep(2);char ack[50] = {0};read(pipe_fd, ack, 50);if (strcmp(ack, "no") == 0){printf("客户端拒绝接收\n");return -1;}while (1){char buf[1024 * 10] = {0};// 读取文件的数据int size = read(fd, buf, 1024 * 10);if (size <= 0){break;}// 写入到管道文件中write(pipe_fd, buf, size); // 读取到多少就写入多少}printf("发送完毕\n");close(fd);close(pipe_fd);
}

 recv.c

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>// 接收进程
int main(int argc, char *argv[])
{if (argc != 2){printf("请输入需要接收的文件名\n");return 0;}// 1.打开发送的文件int fd = open(argv[1], O_RDWR | O_CREAT | O_TRUNC, 0777);if (fd < 0){perror("");return -1;}// 2.打开管道文件int pipe_fd = open("/home/loading/pipe", O_RDWR);if (pipe_fd < 0){perror("");return -1;}// 3.接收文件的大小char head[1024] = {0};read(pipe_fd, head, 1024);int filesize = atoi(head);printf("客户端发送文件,大小为%d,1.yes or 2.no\n", filesize);int n = 0;scanf("%d", &n);if (n == 1){write(pipe_fd, "yes", 3);}else{write(pipe_fd, "no", 2);return -1; // 退出接收}// 休眠等待sleep(1);int down_size = 0; // 下载大小while (1){char buf[1024 * 10] = {0};// 读取管道数据int size = read(pipe_fd, buf, 1024 * 10);if (size <= 0){break;}// 写入到本地文件中write(fd, buf, size); // 读取到多少就写入多少down_size += size;printf("当前接收文件的大小:%d ,进度%.2f %%\r", down_size, (float)down_size * 100 / filesize);if (down_size >= filesize){printf("接收完毕\n");break;}}printf("接收完毕\n");close(fd);close(pipe_fd);
}

这篇关于Linux进程间的通信(二)管道通信及其实际应用(主要是实际编程应用,底层涉及不太多,想了解底层参考《UNIX环境高级编程》)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1119933

相关文章

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

在Mysql环境下对数据进行增删改查的操作方法

《在Mysql环境下对数据进行增删改查的操作方法》本文介绍了在MySQL环境下对数据进行增删改查的基本操作,包括插入数据、修改数据、删除数据、数据查询(基本查询、连接查询、聚合函数查询、子查询)等,并... 目录一、插入数据:二、修改数据:三、删除数据:1、delete from 表名;2、truncate

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

Linux环境变量&&进程地址空间详解

《Linux环境变量&&进程地址空间详解》本文介绍了Linux环境变量、命令行参数、进程地址空间以及Linux内核进程调度队列的相关知识,环境变量是系统运行环境的参数,命令行参数用于传递给程序的参数,... 目录一、初步认识环境变量1.1常见的环境变量1.2环境变量的基本概念二、命令行参数2.1通过命令编程

Linux之进程状态&&进程优先级详解

《Linux之进程状态&&进程优先级详解》文章介绍了操作系统中进程的状态,包括运行状态、阻塞状态和挂起状态,并详细解释了Linux下进程的具体状态及其管理,此外,文章还讨论了进程的优先级、查看和修改进... 目录一、操作系统的进程状态1.1运行状态1.2阻塞状态1.3挂起二、linux下具体的状态三、进程的

Linux编译器--gcc/g++使用方式

《Linux编译器--gcc/g++使用方式》文章主要介绍了C/C++程序的编译过程,包括预编译、编译、汇编和链接四个阶段,并详细解释了每个阶段的作用和具体操作,同时,还介绍了调试和发布版本的概念... 目录一、预编译指令1.1预处理功能1.2指令1.3问题扩展二、编译(生成汇编)三、汇编(生成二进制机器语

C#多线程编程中导致死锁的常见陷阱和避免方法

《C#多线程编程中导致死锁的常见陷阱和避免方法》在C#多线程编程中,死锁(Deadlock)是一种常见的、令人头疼的错误,死锁通常发生在多个线程试图获取多个资源的锁时,导致相互等待对方释放资源,最终形... 目录引言1. 什么是死锁?死锁的典型条件:2. 导致死锁的常见原因2.1 锁的顺序问题错误示例:不同