Python(C++)自动微分导图

2024-08-29 23:28
文章标签 python c++ 自动 导图 微分

本文主要是介绍Python(C++)自动微分导图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. 反向传播矢量化计算方式
  2. 前向传递和后向传递计算方式
  3. 图节点拓扑排序
  4. 一阶二阶前向和伴随模式计算
  5. 二元分类中生成系数高斯噪声和特征
  6. 二元二次方程有向无环计算图
  7. 超平面搜索前向梯度下降算法
  8. 快速傅里叶变换材料应力和切线算子
  9. GPU CUDA 神经网络算术微分
    在这里插入图片描述

Python自动微分前向反向

自动微分不同于符号微分和数值微分。符号微分面临着将计算机程序转换为单一数学表达式的困难,并且可能导致代码效率低下。数值微分(有限差分法)会在离散化过程和取消过程中引入舍入误差。这两种经典方法在计算更高导数时都存在问题,复杂性和误差会增加。最后,这两种经典方法在计算函数对许多输入的偏导数时都很慢,而这是基于梯度的优化算法所需要的。自动微分解决了所有这些问题。
在这里插入图片描述
符号微分是我们将要解开的梯度计算的下一种方法。这是一个系统的过程,将由算术运算和符号组成的表达式转换为表示其导数的表达式。这是通过将微积分的导数规则(例如求和规则)应用于闭式表达式来实现的。

实际上,符号微分是计算机手动推导表达式导数的方式。例如下面的两个函数 f f f g g g,我们可以使用微积分导出其导数的表达式。
g ( x ) = cos ⁡ ( x ) + 2 x − e x f ( g ) = 4 g 2 \begin{gathered} g(x)=\cos (x)+2 x-e^x \\ f(g)=4 g^2 \end{gathered} g(x)=cos(x)+2xexf(g)=4g2

f ( g ( x ) ) = 4 ( cos ⁡ ( x ) + 2 x − e x ) 2 ( 4 ) \begin{aligned} &f(g(x))=4\left(\cos (x)+2 x-e^x\right)^2\qquad(4) \end{aligned} f(g(x))=4(cos(x)+2xex)2(4)

d f d x = d f d g ⋅ d g d x = 8 ( cos ⁡ ( x ) + 2 x − e x ) ⋅ ( − sin ⁡ ( x ) + 2 − e x ) ( 5 ) \frac{d f}{d x}=\frac{d f}{d g} \cdot \frac{d g}{d x}=8\left(\cos (x)+2 x-e^x\right) \cdot\left(-\sin (x)+2-e^x\right)\qquad(5) dxdf=dgdfdxdg=8(cos(x)+2xex)(sin(x)+2ex)(5)

要找到 f ( g ( x ) ) f(g(x)) f(g(x)) 输入的导数,我们只需将其插入上面的转换表达式中并对其求值即可。在实践中,我们以编程方式实现这个过程,并且所表示的变量将不仅仅是标量(例如向量、矩阵或张量)。下面是我们如何符号微分等式4得到等式 5 。

from sympy import symbols, cos, exp, diffx = symbols("x")
fog = 4 * (cos(x) + 2 * x - exp(x)) ** 2
dfdx = diff(fog, x)
print(dfdx)

输出

4*(2*x - exp(x) + cos(x))*(-2*exp(x) - 2*sin(x) + 4)

这解决了数值微分中出现的数值不准确和不稳定的问题,因为我们有一个可以直接计算函数梯度的表达式。不过,我们仍面临限制其优化神经网络可行性的问题。

我们在符号微分中看到的主要问题是表达式膨胀。表达式膨胀导致导数表达式通过变换呈指数增长,这是系统地将导数规则应用于原始表达式的惩罚。以下面的乘法规则为例。
d d x f ( x ) g ( x ) = f ′ ( x ) g ( x ) + g ′ ( x ) f ( x ) \frac{d}{d x} f(x) g(x)=f^{\prime}(x) g(x)+g^{\prime}(x) f(x) dxdf(x)g(x)=f(x)g(x)+g(x)f(x)
导数表达式不仅在术语上有所增长,而且在计算上也有所增长。这甚至没有考虑到 f f f g g g 本身可以是复杂的函数 - 可能会增加更多的表达式膨胀。

当我们导出 d f d x \frac{d f}{d x} dxdf 时,我们看到了一些表达式膨胀,这是一个相对简单的函数。现在想象一下,尝试对许多可能一遍又一遍地应用导数规则的复合函数执行相同的操作,对于神经网络代表许多复杂的复合函数,是极其不切实际的。
f ( x ) = e w x + b + e − ( w x + b ) e w x + b − e − ( w x + b ) ∂ f ∂ w = ( − x e − b − w x − x e b + w x ) ( e − b − w x + e b + w x ) ( − e − b − w x + e b + w x ) 2 + − x e − b − w x + x e b + w x − e − b − w x + e b + w x \begin{gathered} f(x)=\frac{e^{w x+b}+e^{-(w x+b)}}{e^{w x+b}-e^{-(w x+b)}} \\ \frac{\partial f}{\partial w}=\frac{\left(-x e^{-b-w x}-x e^{b+w x}\right)\left(e^{-b-w x}+e^{b+w x}\right)}{\left(-e^{-b-w x}+e^{b+w x}\right)^2}+\frac{-x e^{-b-w x}+x e^{b+w x}}{-e^{-b-w x}+e^{b+w x}} \end{gathered} f(x)=ewx+be(wx+b)ewx+b+e(wx+b)wf=(ebwx+eb+wx)2(xebwxxeb+wx)(ebwx+eb+wx)+ebwx+eb+wxxebwx+xeb+wx

表达式膨胀

上式显示的是神经网络中看到的线性投影,后面是非线性激活函数 tanh。结果表明,在不进行简化和优化的情况下,寻找梯度来更新权重 w w w 可能会导致大量的表达式膨胀和重复计算。

面临的另一个缺点是符号微分仅限于闭式表达式。编程之所以有用,是因为它能够使用控制流根据程序的状态改变程序的行为方式,同样的原理也经常应用于神经网络。

无控制流:

from sympy import symbols, diffdef f(x):if x > 2:return x * 2 + 5return x / 2 + 5x = symbols("x")
dfdx = diff(f(x))
print(dfdx)
TypeError: cannot determine truth value of Relational

示例中暗示的最后一个缺点是我们可能会导致重复计算。在等式4 和 5 中,我们评估 e x e^x ex 三次:一次是在计算等式4 ,两次计算等式5。这可以在更大的范围内实现更复杂的功能,从而为符号微分创造更多的不切实际性。我们可以通过缓存结果来减少这个问题,但这不一定能解决表达式膨胀问题。

自动微分将复合函数表示为组成它们的变量和基本运算。所有数值计算都以这些运算为中心,由于我们知道它们的导数,我们可以将它们串联起来以得出整个函数的导数。简而言之,自动微分是数值计算的增强版本,它不仅可以评估数学函数,还可以计算它们的导数。

下面,我留下了一个示例,仅显示接受两个输入 x 1 x_1 x1 x 2 x_2 x2 的函数的评估跟踪的原始计算。
y = f ( x 1 , x 2 ) = x 1 x 2 + x 2 − ln ⁡ ( x 1 ) x 1 = 2 , x 2 = 4 ( 6 ) \begin{gathered} y=f\left(x_1, x_2\right)=x_1 x_2+x_2-\ln \left(x_1\right) \\ x_1=2, x_2=4 \end{gathered}\qquad(6) y=f(x1,x2)=x1x2+x2ln(x1)x1=2,x2=4(6)

正向原始追踪  输出  v − 1 = x 1 2 v 0 = x 2 4 v 1 = v − 1 v 0 2 ( 4 ) = 8 v 2 = ln ⁡ ( v − 1 ) ln ⁡ ( 2 ) = 0.693 v 3 = v 1 + v 0 8 + 4 = 12 v 4 = v 3 − v 2 12 − 0.693 = 11.307 y = v 4 11.307 \begin{aligned} &\begin{array}{|c|c|} \hline \text { 正向原始追踪 }& \text { 输出 } \\ \hline v _{-1}= x _1 & 2 \\ \hline v _0= x _2 & 4 \\ \hline v _1= v _{-1} v _0 & 2(4)=8 \\ \hline v _2=\ln \left( v _{-1}\right) & \ln (2)=0.693 \\ \hline v_3=v_1+v_0 & 8+4=12 \\ \hline v _4= v _3- v _2 & 12-0.693=11.307 \\ \hline y=v_4 & 11.307 \\ \hline \end{array}\\ \end{aligned}  正向原始追踪 v1=x1v0=x2v1=v1v0v2=ln(v1)v3=v1+v0v4=v3v2y=v4 输出 242(4)=8ln(2)=0.6938+4=12120.693=11.30711.307

在评估轨迹之上,我们可以使用有向无环图作为数据结构,以算法方式表示评估轨迹。有向无环图中的节点表示输入变量、中间变量和输出变量,而边则描述输入到输出转换的计算层次结构。最后,该图必须是有向且无环的,以确保正确的计算流程。整体而言,这种类型的有向无环图通常称为计算图。
在这里插入图片描述
前向模式:

class Variable:def __init__(self, primal, tangent):self.primal = primalself.tangent = tangentdef __add__(self, other):primal = self.primal + other.primaltangent = self.tangent + other.tangentreturn Variable(primal, tangent)def __sub__(self, other):primal = self.primal - other.primaltangent = self.tangent - other.tangentreturn Variable(primal, tangent)def __mul__(self, other):primal = self.primal * other.primaltangent = self.tangent * other.primal + other.tangent * self.primalreturn Variable(primal, tangent)def __truediv__(self, other):primal = self.primal / other.primaltangent = (self.tangent / other.primal) + (-self.primal / other.primal**2) * other.tangentreturn Variable(primal, tangent)def __repr__(self):return f"primal: {self.primal}, tangent: {self.tangent}"

前向模式下自动微分计算

def mul_add(a, b, c):return a * b + c * adef div_sub(a, b, c):return a / b - ca, b, c = Variable(25.0, 1.0), Variable(4.0, 0.0), Variable(-5.0, 0.0)
print(f"{a = }, {b = }, {c = }")
print(f"{mul_add(a, b, c) = }")
a.tangent, b.tangent, c.tangent = 0.0, 1.0, 0.0
print(f"{div_sub(a, b, c) = }")

反向模式

class Variable:def __init__(self, primal, adjoint=0.0):self.primal = primalself.adjoint = adjointdef backward(self, adjoint):self.adjoint += adjointdef __add__(self, other):variable = Variable(self.primal + other.primal)def backward(adjoint):variable.adjoint += adjointself_adjoint = adjoint * 1.0other_adjoint = adjoint * 1.0self.backward(self_adjoint)other.backward(other_adjoint)variable.backward = backwardreturn variabledef __sub__(self, other):variable = Variable(self.primal - other.primal)def backward(adjoint):variable.adjoint += adjointself_adjoint = adjoint * 1.0other_adjoint = adjoint * -1.0self.backward(self_adjoint)other.backward(other_adjoint)variable.backward = backwardreturn variabledef __mul__(self, other):variable = Variable(self.primal * other.primal)def backward(adjoint):variable.adjoint += adjointself_adjoint = adjoint * other.primalother_adjoint = adjoint * self.primalself.backward(self_adjoint)other.backward(other_adjoint)variable.backward = backwardreturn variabledef __truediv__(self, other):variable = Variable(self.primal / other.primal)def backward(adjoint):variable.adjoint += adjointself_adjoint = adjoint * (1.0 / other.primal)other_adjoint = adjoint * (-1.0 * self.primal / other.primal**2)self.backward(self_adjoint)other.backward(other_adjoint)variable.backward = backwardreturn variabledef __repr__(self) -> str:return f"primal: {self.primal}, adjoint: {self.adjoint}"

反向模式自动微分计算

def mul_add(a, b, c):return a * b + c * adef div_sub(a, b, c):return a / b - ca, b, c = Variable(25.0, 1.0), Variable(4.0, 0.0), Variable(-5.0, 0.0)print(f"{a = }, {b = }, {c = }")
d = mul_add(a, b, c)
d.backward(1.0)
print(f"{d = }")
print(f"{a.adjoint = }, {b.adjoint = }, {c.adjoint = }")a.adjoint, b.adjoint, c.adjoint = 0.0, 0.0, 0.0
e = div_sub(a, b, c)
e.backward(1.0)
print(f"{e = }")
print(f"{a.adjoint = }, {b.adjoint = }, {c.adjoint = }")

👉更新:亚图跨际

这篇关于Python(C++)自动微分导图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1119145

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)