基于火锅餐饮大数据的精准推荐系统【协同过滤、前后台信息管理、万能推荐系统】

本文主要是介绍基于火锅餐饮大数据的精准推荐系统【协同过滤、前后台信息管理、万能推荐系统】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • ==有需要本项目的代码或文档以及全部资源,或者部署调试可以私信博主==
      • 项目介绍
      • 项目展示
      • 项目过程
      • 大屏设计
      • 管理员界面
      • 用户界面
      • 数据库展示
      • 用户信息
      • 评论功能
      • 商家回复
      • 每文一语

有需要本项目的代码或文档以及全部资源,或者部署调试可以私信博主

项目介绍

随着数字化时代的到来和大数据技术的迅速发展,各行各业都在探索如何利用海量数据提高服务质量和运营效率。在餐饮行业,尤其是火锅领域,商家面对的挑战是如何在众多竞争者中脱颖而出,而消费者的挑战则是如何在众多选择中找到符合自己口味和预期的火锅店。这些挑战促使开发一个能够分析火锅餐饮大数据、提供精准推荐的系统成为必要,旨在通过技术手段提升用户体验和商家的服务质量。

本课题开发的系统基于Python语言,利用Scrapy框架进行数据爬取,采用MySQL进行数据存储,后端采用Django框架,前端则结合Vue和Echarts进行数据可视化展示。系统的主要功能包括:用户注册登录、火锅火锅店管理、用户评论管理、以及通过数据分析实现的诸如评论统计、人均消费分析、口味偏好、环境评价可视化和词云分析等功能。这些功能不仅为用户提供了个性化的餐饮推荐,还为餐饮管理者提供了深入了解消费者偏好和火锅店表现的工具。

通过实现这一系统,本课题不仅展示了大数据和信息技术在火锅餐饮行业中的应用潜力,也为消费者提供了更加便捷、个性化的就餐体验,为餐饮业主提供了改进服务、优化经营策略的依据。该系统的开发过程和实现成果还对其他餐饮子领域的数字化转型提供了参考价值,展现了数据驱动下的服务创新如何促进行业发展,提高竞争力。

项目展示

在这里插入图片描述

摘 要 I
Abstract I
目 录 I
0 引言 1
1 绪论 1
1.1 课题研究背景 1
1.2 课题研究意义 1
1.3 国内外研究现状 2
1.3.1 国外研究现状 2
1.3.2 国内研究现状 3
2 理论知识技术阐述 4
2.1 Python语言 4
2.2 scrapy爬虫 5
2.3 Echarts框架 5
3 系统需求分析与设计 6
3.1 功能需求分析 6
3.1.1 管理员用例分析 6
3.1.2 用户用例分析 7
3.2 数据处理分析 8
3.3 数据存储分析 8
3.4 系统结构设计 9
3.5 数据库设计 10
3.5.1 数据库概念结构设计 10
3.5.2 数据库逻辑结构设计 13
4 系统实现 16
4.1 数据爬取 16
4.2 数据处理 17
4.3 数据可视化 19
4.3.1 评论统计可视化实现 19
4.3.2 人均分析可视化实现 19
4.3.3 词云分析可视化实现 20
4.3.4 口味可视化实现 21
4.3.5 环境可视化实现 22
5 系统测试 23
5.1 系统测试方法 23
5.2 系统测试用例 23
6 结论 26
致谢 27
参考文献 29

项目过程

在这里插入图片描述

大屏设计

在这里插入图片描述

管理员界面

在这里插入图片描述

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

用户界面

在这里插入图片描述在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

数据库展示

在这里插入图片描述

用户信息

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
基于物品的推荐算法在火锅餐饮推荐系统中的应用,为用户提供了更加精准和个性化的餐饮选择。这一算法通过用户对餐饮项目的评分数据,分析不同菜品之间的相似性,从而实现了高效的推荐。用户对店铺和菜品的评分是整个系统的核心,评分数据不仅反映了用户的偏好,还为推荐算法提供了关键的输入。

当用户在火锅店进行消费并对菜品进行评分后,这些评分数据被记录并用于构建用户-物品评分矩阵。通过对这一矩阵的分析,系统能够计算出每个菜品与其他菜品的相似度。基于这种相似度,系统可以识别出哪些菜品在用户中具有相似的评价模式。比如,如果某用户对某些特定的火锅菜品给予了高评分,那么系统将寻找与这些菜品相似的其他菜品,并推荐给该用户。这种基于物品相似性的推荐,能够准确捕捉到用户的口味偏好,提供更为合适的餐饮选择。

该系统的一个显著优势在于,即使在用户没有明确表达偏好的情况下,也能通过其历史评分数据来推断出可能感兴趣的菜品。这种方法不仅提升了用户的满意度,还增加了用户与平台的互动频率。通过不断积累和分析评分数据,系统可以动态调整推荐策略,适应用户口味的变化,提供更为精准的推荐。

此外,基于物品的推荐算法还能帮助火锅店铺了解哪些菜品在用户中受欢迎,从而优化菜单和营销策略。通过对用户评分数据的深入分析,店铺可以发现高评分菜品的共性,推出更多类似的菜品,提升整体销售业绩。与此同时,店铺还可以根据用户的反馈,改进服务质量,进一步增强用户的用餐体验。

在实际应用中,基于物品的推荐算法通过对评分数据的科学分析,实现了用户与店铺之间的双赢局面。用户能够得到更符合自己口味的餐饮推荐,而店铺则能提升服务质量和客户满意度。这种精准化的推荐机制,不仅为用户提供了便利,也为餐饮行业的智能化发展提供了有力支持。通过持续优化算法和数据处理方法,基于物品的推荐系统将在未来发挥更加重要的作用,推动餐饮行业的创新和进步。

评论功能

在这里插入图片描述

商家回复

在这里插入图片描述

每文一语

有时候需要系统的学习一门技术,你才可以知道如何站在巨人的肩膀

这篇关于基于火锅餐饮大数据的精准推荐系统【协同过滤、前后台信息管理、万能推荐系统】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1118706

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于