K 线图快速绘制教程:使用 KLineChart 展示 DolphinDB K 线

2024-08-29 19:28

本文主要是介绍K 线图快速绘制教程:使用 KLineChart 展示 DolphinDB K 线,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

KLineChart 是一款开源、简单易用、适用场景丰富的 Web 前端金融图表,基于 html5 canvas 构建,零依赖压缩包仅 40K,非常轻量。它可以用于渲染金融 K 线图,同时支持多种数据源,提供了丰富的交互功能以及指标计算接口。由于 KLineChart 高度可定制且用户友好,非常适合开发者将复杂的图表功能集成到其他金融应用程序中。

DolphinDB 身为一个高性能的数据库,不仅在存储和数据分析上具有优势,也提供了丰富的 API 接口和插件,和各种外部工具对接和集成。DolphinDB JavaScript API 封装了操作 DolphinDB 数据库的能力,如:连接数据库、执行脚本、调用函数、上传变量、订阅流表等。利用该 API,用户可以读取 DolphinDB 数据与前端工具自由对接。

本文将以对接 KLineChart 为例,展示如何读取在 DolphinDB 中存储的 K 线数据,以快速绘制前端 K 线图。

数据准备

本例使用的 K 线数据通过下述示例文件 candle_201801.csv 文件导入,以下为导入脚本:

t = loadText("<yourPath>/candle_201801.csv")
share t as jsTable

示例数据:单只股票一个月的数据

1. 数据类型

与前端工具的对接的主要难点在于字段的对齐,即从 DolphinDB 中读取的数据类型必须与前端工具接收的数据类型对齐,保证数据可以对接。

KLineCharts 对于对接的数据有固定的字段名和类型要求:

{// Timestamp, millisecond, required fieldstimestamp: number// Open price, required fieldsopen: number// Close price, required fieldclose: number// Highest price, required fieldhigh: number// Lowest price, required fieldlow: number// volume, optional fieldvolume: number// Turnover, a non-required field, if you need to display the technical indicators 'EMV' and 'AVP', you need to fill this field with data.turnover: number
}

从 DolphinDB 下载数据到 JavaScript 时,对应的数据类型转换关系为(下表仅列出部分常规类型)

DolphinDBJavaScript
TEMPORAL(所有时间类型)STRING/SYMBOLDECIMALCHARString
LONGBigInt
DOUBLE/FLOATINT/SHORTNumber

2. 环境准备

导入 KLineCharts 的 JavaScript 代码如下:

<head><title>DolphinDB</title><meta charset="utf-8"><script type="text/javascript" src="https://cdn.dolphindb.cn/vendors/klinecharts/dist/umd/klinecharts.min.js"></script>
</head>

通过模块化方式引入 DolphinDB JavaScript API 并建立与 DolphinDB 节点的连接。

import { DDB } from 'https://cdn.dolphindb.cn/assets/api.js;
let conn = new DDB('ws://ip:port');

3. 通过历史数据生成 K 线

通过 JavaScript API 的 execute 方法可以直接执行 DolphinDB 脚本。

此处使用 SQL Select 语句查出 K 线数据中绘图必要的字段 timestamp, open, high, low, close, volume, turnover。

conn.execute('select unixTime as timestamp, open, high, low, close, volume, turnover from jsTable');

DolphinDB 中上述数据字段对应的数据类型为:

字段DolphinDB 类型JavaScript 类型
unixTimeLONGBigInt
openDOUBLENumber
highDOUBLENumber
lowDOUBLENumber
closeDOUBLENumber
volumeINTNumber
turnoverDOUBLENumber

可以发现 unixTime 会转换为 BigInt 类型,与 KLineChart 的 Number 类型不一致,此处需要进行一个转换。有两种转换思路:

(1)在 DolphinDB 端转换,直接转成不丢失精度的 DOUBLE 类型:

const re = await conn.execute('select double(unixTime) as timestamp, open, high, low, close, volume, turnover from jsTable'); 

(2)使用 JavaScript 脚本进行强制类型转换:

const re = await conn.execute('select unixTime as timestamp, open, high, low, close, volume, turnover from jsTable');
// 默认是 bigInt 需要转成 Number
re.data.forEach(item => {item.timestamp = Number(item.timestamp);
});

上述两种类型转换方式都可以成功绘制出 KLine 图,但在本例中,第一种方法更为高效。

KLineChart 的 applyNewData 接口适配于全量数据的渲染,因此本例中调用 chart.applyNewData 写入历史数据。

// 绘制 kline
const chart = klinecharts.init('k-line-chart');
chart.applyNewData(re.data);

最后绘制的效果如下:

图3-1 K 线绘制示例

上述完整可参考的 HTML 脚本如下:

<!DOCTYPE html>
<html>
<head><title>DolphinDB</title><meta charset="utf-8"><script type="text/javascript" src="https://cdn.dolphindb.cn/vendors/klinecharts/dist/umd/klinecharts.min.js"></script>
</head>
<body><div id="main" style="width: 600px; height:50px;"></div><div id="k-line-chart" style="height:800px;"></div><script type="module">import { DDB } from 'https://cdn.dolphindb.cn/assets/api.js';// <ip:port> 需要替换成自己的 DolphinDB 节点 ip 和端口号。let conn = new DDB('ws://<ip:port>');const re = await conn.execute('select unixTime as timestamp, open, high, low, close, volume, turnover from jsTable');// 默认是 bigInt 需要转成 Numberre.data.forEach(item => {item.timestamp = Number(item.timestamp);});const chart = klinecharts.init('k-line-chart');chart.applyNewData(re.data);</script>
</body>
</html>

4. 通过实时数据生成 K 线

如果通过历史数据合成 K 线,只需要将数据通过 DolphinDB SQL 查询计算,全量获取结果,然后调用该接口写入前端即可渲染展示。

如果上游接入的是实时数据源,则前端有两种方案去获取后端的实时数据:

  • 通过 DolphinDB 的 JavaScript API 的流订阅的接口:使用 JavaScript API 的流订阅接口获取实时数据时,后端增量推送实时数据到前端,前端累积订阅数据,通过回调函数发布给 KLineChart 进行展示。该方式的优点在于后端增量推送数据,且前端有数据到来才会去回调渲染 K 线。
  • 通过 SQL 的定时轮询查询获:使用 SQL 定时轮询查询获取实时数据,和基于历史数据生成 K 线类似,只是查询对象从普通表替换成了流数据表。上游数据流入流表,API 定时查询进行前端渲染。其优点在于对于不需要频繁渲染的场景,可以自行调控渲染的时间间隔,而不是每次数据更新都去渲染;其缺点是 SQL 每次都全量读取后端的数据,如果数据量大,会造成很大的延时,无法实现流订阅接口那样增量推送即时渲染效果。

对于前端数据的渲染,KLineChart 提供的函数对应了两种追加方式:

  • 全量追加(较为推荐):使用 chart.applyNewData 函数。添加新数据,此方法会清空图表数据,不需要额外调用clearData方法。
  • 增量追加:使用 chart.updateData 函数。更新数据,目前只会匹配当前最后一条数据的时间戳,相同则覆盖,不同则追加。

用户可以根据各自的场景选取合适的方式实现,下文给出两种方式的实现参考。

4.1 流数据订阅

解决方案:DolphinDB 后端利用行情插件、消息中间件等实时拉取或实时合成 K 线数据,前端利用 JavaScript API 的流数据接口订阅 K 线数据。

JavaScript API 的流数据订阅示接口如下:

export interface StreamingParams {table: stringaction?: stringhandler (message: StreamingMessage): any
}

其中 handler 部分用于定义回调函数,对每次接收到的订阅数据进行处理。KLineChart 绘图逻辑可以在 handler 中实现。

全量追加:JavaScript API 的 message 对象维护了一个缓存所有订阅数据的接口 message.window.data,可以直接将该对象应用在 chart 上以实现实时 KLine 图像绘制。

handler (message) {chart.applyNewData(message.window.data); // 更新图表数据
}

增量追加:借助 chart.updateData 接口进行数据追加或更新。该接口支持最后一条数据的更新和逐条数据追加,因此对于 API 端获取的增量 Array 数据,需要用 forEach 进行遍历。调用后,KLineChart 对每新增的一条数据都去渲染一次前端的图表,其性能较全量追加的方案会略差。

handler (message) {message.data.data.forEach(function(data){chart.updateData(data)}); // 更新图表数据
}

如果有数据过滤或处理的需求,也可以通过 message.data.data 获取每个批次订阅到的数据。

上述完整可参考的 HTML 脚本如下:

<!DOCTYPE html>
<html>
<head><title>DolphinDB</title><meta charset="utf-8"><script type="text/javascript" src="https://cdn.dolphindb.cn/vendors/klinecharts/dist/umd/klinecharts.min.js"></script>
</head>
<body><div id="main" style="width: 600px; height:50px;"></div><div id="k-line-chart" style="height:800px;"></div><script type="module">import { DDB } from 'https://cdn.dolphindb.cn/assets/api.js';const chart = klinecharts.init('k-line-chart');let allData = []; // 用于累积所有接收到的数据const lastData = [];let conn = new DDB('ws://<ip:port>', {autologin: true,username: 'admin',password: '123456',streaming: {table: 'st', // 替换成自己的流表名action: 'sub',// 流数据处理回调, message 的类型是 StreamingMessagehandler (message) {chart.applyNewData(message.window.data); // 更新图表数据// 或者// message.data.data.forEach(function(data){//    chart.updateData(data)//});}}})await conn.connect()</script>
</body>
</html>

执行该 HTML 脚本前,需要先创建流数据表 st:

t1 = select timestamp(unixTime) as ts, double(unixTime) as timestamp, open, high, low, close, volume, turnover from jsTable
share streamTable(1:0, ['ts', 'timestamp', 'open', 'high', 'low', 'close', 'volume', 'turnover'], [TIMESTAMP, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, INT, DOUBLE]) as st

建立流订阅后,在 DolphinDB 后端通过 replay 接口模拟实时流数据回放:

注意:由于目前 JavaScript API 流订阅暂不支持设置  offset,默认从最新一条数据发起订阅(offset=-1)。需要前端脚本执行建立连接后,再调用  replay 函数进行回放。
// 回放流表,模拟实时数据注入
replay(inputTables=t1, outputTables=st, dateColumn=`ts, replayRate=1000, absoluteRate=true);

由于 replay 需要指定回放的时间列,该时间列必须是 DolphinDB 时间类型的数据,且 DolphinDB 的时间字段在 JavaScript 端会转换为字符串,因此不能和 KLineCharts 的时间字段共用。为此,本例额外定义了 ts 字段作为回放时间列字段。

4.2 SQL 定时轮询

解决方案:在后端接收或合成 KLine 数据,然后通过流表推送到一个键值表(按照时间去重)。前端定时查询该键值表并刷新 K 线图表。

利用 KLineChart 的 applyNewData 的特性:自动清空图表数据,不需要额外调用 clearData 方法。每次执行查询获取 DolphinDB 端的数据后,直接调用 chart.applyNewData 即可,无需再调用刷新数据的方法。

由于 JavaScript API 的执行接口是异步的,因此定时调用的函数也需要封装成异步的接口:

async function updateChart(conn) {const re = await conn.execute('select timestamp, open, high, low, close, volume, turnover from kt');chart.applyNewData(re.data);
}

前端定时查询利用 setInterval 函数即可实现,刷新的时间间隔根据具体的场景设置,本例由于数据源是通过 replay 函数每秒匀速回放的,故而采用每秒刷新一次的方案,,如果对前端刷新要求不高,可以手动调整这个参数。

setInterval(() => updateChart(conn), 1000)

上述完整可参考的 HTML 脚本如下:

<!DOCTYPE html>
<html>
<head><title>DolphinDB</title><meta charset="utf-8"><script type="text/javascript" src="https://cdn.dolphindb.cn/vendors/klinecharts/dist/umd/klinecharts.min.js"></script>
</head>
<body><div id="main" style="width: 600px; height:50px;"></div><div id="k-line-chart" style="height:800px;"></div><script type="module">import { DDB } from 'https://cdn.dolphindb.cn/assets/api.js';const chart = klinecharts.init('k-line-chart');let conn = new DDB('ws://<ip:port>');await conn.connect();async function updateChart(conn) {const re = await conn.execute('select timestamp, open, high, low, close, volume, turnover from kt');chart.applyNewData(re.data);}setInterval(() => updateChart(conn), 1000)</script>
</body>
</html>

执行该 HTML 脚本前,需要先创建共享表 kt:

t1 = select timestamp(unixTime) as ts, double(unixTime) as timestamp, open, high, low, close, volume, turnover from jsTable
share streamTable(1:0, ['ts', 'timestamp', 'open', 'high', 'low', 'close', 'volume', 'turnover'], [TIMESTAMP, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, INT, DOUBLE]) as stshare keyedTable(`timestamp, 1:0, ['ts', 'timestamp', 'open', 'high', 'low', 'close', 'volume', 'turnover'], [TIMESTAMP, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, INT, DOUBLE]) as kt
// 订阅一张实时的流表,然后写入一个 keyedTable 去维护不包含重复时间戳的数据
subscribeTable(tableName="st", actionName="sub_st", handler=kt) 

本例中 kt 表订阅流数据表 st 的数据,对其进行时间戳去重。

建立流订阅后,在 DolphinDB 后端通过 replay 接口模拟实时流数据回放:

// 回放流表,模拟实时数据注入
replay(inputTables=t1, outputTables=st, dateColumn=`ts, replayRate=100, absoluteRate=true);

5. 总结

本文利用 DolphinDB JavaScript API 提供的脚本执行和流订阅等接口,实现了与 KLineChart 前端工具的对接。总体流程为:DolphinDB 后端合成和存储 K 线数据,JavaScript API 订阅 K 线数据并将其写入 KLineChart 的图表接口。由于 JavaScript API 接口的封装和适配,以及 KLineChart 轻量级的图表接口,该过程仅需 10 到 20 行代码即可轻松完成。

更复杂的 K 线功能请参考 KLineChart 官方文档: Quick Start | KLineChart

JavaScript API 的用法请参考 DolphinDB 官方文档:JavaScript API

更多 DolphinDB K 线合成的教程可以参考官方教程:基于快照行情的股票和基金 K 线合成

6. 附录

本教程使用的代码文件:完整代码文件

这篇关于K 线图快速绘制教程:使用 KLineChart 展示 DolphinDB K 线的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1118703

相关文章

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

如何使用Lombok进行spring 注入

《如何使用Lombok进行spring注入》本文介绍如何用Lombok简化Spring注入,推荐优先使用setter注入,通过注解自动生成getter/setter及构造器,减少冗余代码,提升开发效... Lombok为了开发环境简化代码,好处不用多说。spring 注入方式为2种,构造器注入和setter

MySQL中比较运算符的具体使用

《MySQL中比较运算符的具体使用》本文介绍了SQL中常用的符号类型和非符号类型运算符,符号类型运算符包括等于(=)、安全等于(=)、不等于(/!=)、大小比较(,=,,=)等,感兴趣的可以了解一下... 目录符号类型运算符1. 等于运算符=2. 安全等于运算符<=>3. 不等于运算符<>或!=4. 小于运

使用zip4j实现Java中的ZIP文件加密压缩的操作方法

《使用zip4j实现Java中的ZIP文件加密压缩的操作方法》本文介绍如何通过Maven集成zip4j1.3.2库创建带密码保护的ZIP文件,涵盖依赖配置、代码示例及加密原理,确保数据安全性,感兴趣的... 目录1. zip4j库介绍和版本1.1 zip4j库概述1.2 zip4j的版本演变1.3 zip4

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

一文详解如何使用Java获取PDF页面信息

《一文详解如何使用Java获取PDF页面信息》了解PDF页面属性是我们在处理文档、内容提取、打印设置或页面重组等任务时不可或缺的一环,下面我们就来看看如何使用Java语言获取这些信息吧... 目录引言一、安装和引入PDF处理库引入依赖二、获取 PDF 页数三、获取页面尺寸(宽高)四、获取页面旋转角度五、判断

Windows环境下解决Matplotlib中文字体显示问题的详细教程

《Windows环境下解决Matplotlib中文字体显示问题的详细教程》本文详细介绍了在Windows下解决Matplotlib中文显示问题的方法,包括安装字体、更新缓存、配置文件设置及编码調整,并... 目录引言问题分析解决方案详解1. 检查系统已安装字体2. 手动添加中文字体(以SimHei为例)步骤

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命