9-6 编码器-解码器架构

2024-08-29 17:52
文章标签 架构 编码器 解码器

本文主要是介绍9-6 编码器-解码器架构,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

正如我们在 9-5节中所讨论的, 机器翻译是序列转换模型的一个核心问题, 其输入和输出都是长度可变的序列。 为了处理这种类型的输入和输出, 我们可以设计一个包含两个主要组件的架构: 第一个组件是一个编码器(encoder): 它接受一个长度可变的序列作为输入, 并将其转换为具有固定形状的编码状态。 第二个组件是解码器(decoder): 它将固定形状的编码状态映射到长度可变的序列。 这被称为编码器-解码器(encoder-decoder)架构, 如 图9.6.1 所示。
请添加图片描述
我们以英语到法语的机器翻译为例: 给定一个英文的输入序列:“They”“are”“watching”“.”。 首先,这种“编码器-解码器”架构将长度可变的输入序列编码成一个“状态”, 然后对该状态进行解码, 一个词元接着一个词元地生成翻译后的序列作为输出: “Ils”“regordent”“.”。 由于“编码器-解码器”架构是形成后续章节中不同序列转换模型的基础, 因此本节将把这个架构转换为接口方便后面的代码实现。

编码器

在编码器接口中,我们只指定长度可变的序列作为编码器的输入X。 任何继承这个Encoder基类的模型将完成代码实现。

from torch import nnclass Encoder(nn.Module):"""编码器-解码器架构的基本编码器接口"""def __init__(self, **kwargs):# **kwargs 允许传递任意数量的关键字参数给 __init__,这样可以灵活地配置编码器。super(Encoder, self).__init__(**kwargs)# super(Encoder, self).__init__(**kwargs) 调用了父类 nn.Module 的构造函数,确保 nn.Module 的初始化过程正常执行,并传递 kwargs 中的参数。通过 super() 调用父类的构造函数是继承类中常见的做法,目的是确保继承的特性和行为能够正确初始化def forward(self, X, *args):# *args 允许传入任意数量的其他位置参数,这些参数可能在实际实现中需要。raise NotImplementedError# raise NotImplementedError 表示这个方法还没有实现,它是一个占位符,提醒开发者在使用该类时必须在子类中实现这个方法。如果有人直接调用 Encoder 类的 forward 方法,程序将抛出 NotImplementedError 错误,提示这个方法未被实现。

解码器

在下面的解码器接口中,我们新增一个init_state函数, 用于将编码器的输出(enc_outputs)转换为编码后的状态。 注意,此步骤可能需要额外的输入,例如:输入序列的有效长度, 这在 9.5节中进行了解释。 为了逐个地生成长度可变的词元序列, 解码器在每个时间步都会将输入 (例如:在前一时间步生成的词元)和编码后的状态 映射成当前时间步的输出词元。

#@save
class Decoder(nn.Module):"""编码器-解码器架构的基本解码器接口"""def __init__(self, **kwargs):super(Decoder, self).__init__(**kwargs)def init_state(self, enc_outputs, *args):raise NotImplementedErrordef forward(self, X, state):raise NotImplementedError

合并编码器和解码器

总而言之,“编码器-解码器”架构包含了一个编码器和一个解码器, 并且还拥有可选的额外的参数。 在前向传播中,编码器的输出用于生成编码状态, 这个状态又被解码器作为其输入的一部分。

class EncoderDecoder(nn.Module):"""编码器-解码器架构的基类"""def __init__(self, encoder, decoder, **kwargs):super(EncoderDecoder, self).__init__(**kwargs)self.encoder = encoderself.decoder = decoderdef forward(self, enc_X, dec_X, *args):# enc_X 是编码器的输入,通常是一个序列数据,例如句子或时间序列。# dec_X 是解码器的输入,通常是目标序列的起始部分,或在某些情况下是整个目标序列。enc_outputs = self.encoder(enc_X, *args)# 调用编码器的 forward 方法,将 enc_X 及其他参数传递给编码器。enc_outputs 是编码器的输出,通常是对输入 enc_X 的一种编码表示(例如,隐藏状态)。dec_state = self.decoder.init_state(enc_outputs, *args)# 调用解码器的 init_state 方法,以编码器的输出 enc_outputs 为输入,初始化解码器的状态。dec_state 通常包含解码器的初始隐藏状态或其他需要在解码过程中使用的上下文信息。return self.decoder(dec_X, dec_state)# 将解码器的输入 dec_X 和初始状态 dec_state 传递给解码器,调用解码器的 forward 方法,输出解码结果。这通常是目标序列的预测或生成。# forward 方法描述了输入数据如何在整个架构中流动。编码器首先处理输入数据,生成编码输出。然后解码器基于编码输出和解码器的初始状态生成目标序列的输出。

“编码器-解码器”体系架构中的术语状态 会启发人们使用具有状态的神经网络来实现该架构。 在下一节中,我们将学习如何应用循环神经网络, 来设计基于“编码器-解码器”架构的序列转换模型。

小结

  • “编码器-解码器”架构可以将长度可变的序列作为输入和输出,因此适用于机器翻译等序列转换问题。

  • 编码器将长度可变的序列作为输入,并将其转换为具有固定形状的编码状态。

  • 解码器将具有固定形状的编码状态映射为长度可变的序列。

这篇关于9-6 编码器-解码器架构的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1118561

相关文章

mybatis的整体架构

mybatis的整体架构分为三层: 1.基础支持层 该层包括:数据源模块、事务管理模块、缓存模块、Binding模块、反射模块、类型转换模块、日志模块、资源加载模块、解析器模块 2.核心处理层 该层包括:配置解析、参数映射、SQL解析、SQL执行、结果集映射、插件 3.接口层 该层包括:SqlSession 基础支持层 该层保护mybatis的基础模块,它们为核心处理层提供了良好的支撑。

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

系统架构设计师: 信息安全技术

简简单单 Online zuozuo: 简简单单 Online zuozuo 简简单单 Online zuozuo 简简单单 Online zuozuo 简简单单 Online zuozuo :本心、输入输出、结果 简简单单 Online zuozuo : 文章目录 系统架构设计师: 信息安全技术前言信息安全的基本要素:信息安全的范围:安全措施的目标:访问控制技术要素:访问控制包括:等保

利用命令模式构建高效的手游后端架构

在现代手游开发中,后端架构的设计对于支持高并发、快速迭代和复杂游戏逻辑至关重要。命令模式作为一种行为设计模式,可以有效地解耦请求的发起者与接收者,提升系统的可维护性和扩展性。本文将深入探讨如何利用命令模式构建一个强大且灵活的手游后端架构。 1. 命令模式的概念与优势 命令模式通过将请求封装为对象,使得请求的发起者和接收者之间的耦合度降低。这种模式的主要优势包括: 解耦请求发起者与处理者

创业者该如何设计公司的股权架构

本文来自七八点联合IT橘子和车库咖啡的一系列关于设计公司股权结构的讲座。 主讲人何德文: 在公司发展的不同阶段,创业者都会面临公司股权架构设计问题: 1.合伙人合伙创业第一天,就会面临股权架构设计问题(合伙人股权设计); 2.公司早期要引入天使资金,会面临股权架构设计问题(天使融资); 3.公司有三五十号人,要激励中层管理与重要技术人员和公司长期走下去,会面临股权架构设计问题(员工股权激

【系统架构设计师】黑板架构详解

黑板架构(Blackboard Architecture)是一种软件架构模式,它模仿了多个专家系统协作解决问题的场景。在这种架构中,“黑板”作为一个中央知识库,存储了问题的当前状态以及所有的解决方案和部分解决方案。黑板架构特别适合于解决那些没有确定算法、需要多个知识源(或称为“专家”)共同作用才能解决的复杂问题。 一、黑板架构的组成 黑板架构主要由以下几个部分组成: 黑板(Blackboa

Java后端微服务架构下的API限流策略:Guava RateLimiter

Java后端微服务架构下的API限流策略:Guava RateLimiter 大家好,我是微赚淘客返利系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿! 在微服务架构中,API限流是保护服务不受过度使用和拒绝服务攻击的重要手段。Guava RateLimiter是Google开源的Java库中的一个组件,提供了简单易用的限流功能。 API限流概述 API限流通过控制请求的速率来防止

Arch - 演进中的架构

文章目录 Pre原始分布式时代1. 背景与起源2. 分布式系统的初步探索3. 分布式计算环境(DCE)4. 技术挑战与困境5. 原始分布式时代的失败与教训6. 未来展望 单体时代优势缺陷单体架构与微服务架构的关系总结 SOA时代1. SOA架构及其背景1. 烟囱式架构(Information Silo Architecture)2. [微内核架构](https://www.oreilly.c

新一代车载(E/E)架构下的中央计算载体---HPC软件架构简介

老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,无利益不试图说服别人,是精神上的节能减排。 无人问津也好,技不如人也罢,你都要试着安静下来,去做自己该做的事.而不是让内心的烦躁、焦虑、毁掉你本就不多的热情和定力。 时间不知不觉中,快要来到夏末秋初。一年又过去了一大半,成

Linux 云计算底层技术之一文读懂 Qemu 架构

Qemu 架构概览 Qemu 是纯软件实现的虚拟化模拟器,几乎可以模拟任何硬件设备,我们最熟悉的就是能够模拟一台能够独立运行操作系统的虚拟机,虚拟机认为自己和硬件打交道,但其实是和 Qemu 模拟出来的硬件打交道,Qemu 将这些指令转译给真正的硬件。 正因为 Qemu 是纯软件实现的,所有的指令都要经 Qemu 过一手,性能非常低,所以,在生产环境中,大多数的做法都是配合 KVM 来完成