第二十六篇:USB3.0高带宽ISO(48KBytes/125us)实战

2024-08-29 17:08

本文主要是介绍第二十六篇:USB3.0高带宽ISO(48KBytes/125us)实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

USB3.1技术已经推出, 10Gbps的速率足以满足数据, HD视频传输的要求.

要步入USB3.1的研发, 还得将USB3.0的基础打扎实.


微软提供的SUPER MUTT只包含一个接口0, 其下有两个ALT, ALT 1与ALT 2, 分别包含了两对ISO IN/OUT端点, 不过, 只有ALT 2下的ISO OUT EP的bMaxBurst为1, 而其它三个ISO EP的bMaxBurst均为0, 而所有的ISO EP的Mult均为0.

即只有一个ISO EP支持2KBytes/125us的能力, 其余三个ISO EP只支持1KBytes/125us的能力, 技术上来讲, 远远未达到高带宽(48KBytes/125us)的上限.


这样的设备,甚至都不如一个高带宽的USB2.0的设备(3KBytes/125us),用来衡量系统中USB3.0 xHCI HOST的高带宽能力也就无从谈起了.

于是, 利用自开发的USB3.0 silicon, 对设备端驱动稍作修改, 经过Lecory Advisor T3 USB3.0分析仪的验证, 证明设备端的ISO EP具有接收与发送48KBytes/125us的能力.


接下来, 则需要用该设备来验证xHCI USB3.0 HOST的ISO高带宽能力.

测试平台为INTEL xHCI USB3.0 HOST, Win8 USB3 STACK.

先给出测试结果:

(1.1) HOST发送48*8KBYTES的数据

ISO MaxPacketSize = 49152

000000830.01842206read-write irp failed with status C0000001

000000850.01842534urb header status C0000B00
00000089 0.01843355IsoPacket[0].offset = 0           IsoPacket[0].Length = 49152 IsoPacket[0].Status = c0030000
00000091 0.01843889IsoPacket[1].offset = 49152   IsoPacket[1].Length = 49152 IsoPacket[1].Status = c0030000
00000093 0.01844382IsoPacket[2].offset = 98304   IsoPacket[2].Length = 49152 IsoPacket[2].Status = c0030000
00000095 0.01844915IsoPacket[3].offset = 147456 IsoPacket[3].Length = 49152 IsoPacket[3].Status = c0030000
00000097 0.01846065IsoPacket[4].offset = 196608 IsoPacket[4].Length = 49152 IsoPacket[4].Status = c0030000
00000099 0.01846393IsoPacket[5].offset = 245760 IsoPacket[5].Length = 49152 IsoPacket[5].Status = c0030000
00000101 0.01846763IsoPacket[6].offset = 294912 IsoPacket[6].Length = 49152 IsoPacket[6].Status = c0030000
00000103 0.01847091IsoPacket[7].offset = 344064 IsoPacket[7].Length = 49152 IsoPacket[7].Status = c0030000

Total data transferred = 0(dec), 0(hex)


(1.2)  HOST接收48*8KBYTES的数据

000001690.02440798IsoPacket[0].offset = 0           IsoPacket[0].Length = 49152     IsoPacket[0].Status = 0
00000171 0.02441290IsoPacket[1].offset = 49152   IsoPacket[1].Length = 49152     IsoPacket[1].Status = 0
00000173 0.02441824IsoPacket[2].offset = 98304   IsoPacket[2].Length = 0             IsoPacket[2].Status = c0030000
00000175 0.02442317IsoPacket[3].offset = 147456 IsoPacket[3].Length = 0             IsoPacket[3].Status = c0030000
00000177 0.02442850IsoPacket[4].offset = 196608 IsoPacket[4].Length = 49152     IsoPacket[4].Status = c0030000
00000179 0.02443343IsoPacket[5].offset = 245760 IsoPacket[5].Length = 0             IsoPacket[5].Status = c0030000
00000181 0.02444533IsoPacket[6].offset = 294912 IsoPacket[6].Length = 0             IsoPacket[6].Status = c0030000
00000183 0.02444821IsoPacket[7].offset = 344064 IsoPacket[7].Length = 49152     IsoPacket[7].Status = 0

这里比较有意思的是:

8个包中, 有三个(0, 1, 7)是成功传输了48K的, 还有一个虽然也传输了48K, 但系统USB3.0 STACK认为该ISO PACKET(4)是不成功的.

这个不成功的原因, 后文中会解释原因.

我所说的有意思是, USB3 STACK在填UrbIsochronousTransfer.TransferBufferLength的时候, 却是4*48K, 而不是3*48K.



从以上USB分析仪中的数据可以发现, 这8次写失败的原因有两个:

1. xHCI HOST没有在一个UFRAME中将数据发完,

2. XHCI HOST根本没有发数据, 甚至都没有在这个UFRAME中发出PING

归结起来, 就是系统USB SUBSYSTEM, 甚至包括MEMORY CONTROLLER, 系统总线等一系列的因素所导致.


对于读成功的情况, 则是在一个UFRAME中, XHCI HOST引发了(32+16)个1K的包的读.

对于不成功的情况, 则是UFRAME中, XHCI HOST没有发出ACK IN来读取设备端的数据, 也甚至连PING都没有发出.


(2.1) 48K*1写:

00000082 0.00891627 read-write irp failed with status C0000001
00000084 0.00891914 urb header status C0000B00
00000088 0.00892735 IsoPacket[0].offset = 0           IsoPacket[0].Length = 49152 IsoPacket[0].Status = c0030000
00000090 0.00893269 IsoPacket[1].offset = 49152   IsoPacket[1].Length = 0         IsoPacket[1].Status = c0020000
00000092 0.00893803 IsoPacket[2].offset = 98304   IsoPacket[2].Length = 0         IsoPacket[2].Status = c0020000
00000094 0.00894295 IsoPacket[3].offset = 147456 IsoPacket[3].Length = 0         IsoPacket[3].Status = c0020000 
00000096 0.00895527 IsoPacket[4].offset = 196608 IsoPacket[4].Length = 0         IsoPacket[4].Status = c0020000
00000098 0.00895855 IsoPacket[5].offset = 245760 IsoPacket[5].Length = 0         IsoPacket[5].Status = c0020000
00000100 0.00896184 IsoPacket[6].offset = 294912 IsoPacket[6].Length = 0         IsoPacket[6].Status = c0020000
00000102 0.00896471 IsoPacket[7].offset = 344064 IsoPacket[7].Length = 0         IsoPacket[7].Status = c0020000
00000110 0.00897498 Total data transferred = 0(dec), 0(hex)


其中, 写没成功, 原因与48*8K相同, 没有在一个UFRAME将数据发完.

后面的ERROR CODE c0020000并非真正的错误, 而是上层没有数据可发导致.


(2.2)48K*1读:

00000168 0.01482911 IsoPacket[0].offset = 0           IsoPacket[0].Length = 49152   IsoPacket[0].Status = 0
00000170 0.01483404 IsoPacket[1].offset = 49152   IsoPacket[1].Length = 0           IsoPacket[1].Status = c0030000
00000172 0.01483938 IsoPacket[2].offset = 98304   IsoPacket[2].Length = 0           IsoPacket[2].Status = c0030000
00000174 0.01484389 IsoPacket[3].offset = 147456 IsoPacket[3].Length = 49152   IsoPacket[3].Status = 0
00000176 0.01485498 IsoPacket[4].offset = 196608 IsoPacket[4].Length = 0           IsoPacket[4].Status = c0030000
00000178 0.01485826 IsoPacket[5].offset = 245760 IsoPacket[5].Length = 0           IsoPacket[5].Status = c0030000
00000182 0.01486196 IsoPacket[6].offset = 294912 IsoPacket[6].Length = 49152   IsoPacket[6].Status = 0
00000186 0.01486524 IsoPacket[7].offset = 344064 IsoPacket[7].Length = 0           IsoPacket[7].Status = c0030000

情况和48K*8情况相同.

只是这里没有出现既传输了数据, 又是出错的情况.


(3.1) 32K*8 WRITE

(3.2) 32K*8 READ

都成功.



总结:

INTEL的xHCI系统加上WIN8的USB3 STACK可以达到32KB/UFRAME的能力, 但不能达到48KB/UFRAME的能力.


这篇关于第二十六篇:USB3.0高带宽ISO(48KBytes/125us)实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1118453

相关文章

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

nginx-rtmp-module构建流媒体直播服务器实战指南

《nginx-rtmp-module构建流媒体直播服务器实战指南》本文主要介绍了nginx-rtmp-module构建流媒体直播服务器实战指南,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. RTMP协议介绍与应用RTMP协议的原理RTMP协议的应用RTMP与现代流媒体技术的关系2

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库