FPGA实现HDMI传输(二)

2024-08-29 13:44
文章标签 实现 fpga 传输 hdmi

本文主要是介绍FPGA实现HDMI传输(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

之前的文章简单介绍了HDMI接口、TMDS编码以及ADV611工作原理和寄存器配置,本篇博客将给出具体的代码以及板级验证结果,代码参考自米联客的教程。

一.ADV7611配置

1.i2c驱动模块

`timescale 1ns / 1psmodule uii2c#
(parameter       WMEN_LEN        =       8'd0,                                           //写入字节长度parameter       RMEN_LEN        =       8'd0,                                           //读出字节长度parameter       CLK_DIV         =       16'd499                                         //i2c时钟分频系数
)
(input                                       clk_i,                                      //系统时钟input            [7:0]                      rd_cnt,                                     //读数据长度,包含器件地址input                                       iic_en,                                     //i2c使能信号input                                       iic_mode,                                   //i2c工作模式input            [WMEN_LEN*8-1'b1:0]        wr_data,                                    //写入数据input            [7:0]                      wr_cnt,                                     //写数据长度,包含器件地址output       reg [RMEN_LEN*8-1'b1:0]        rd_data     =   0,                          //读取数据output       reg                            iic_scl     =   0 ,                         //i2c时钟总线output       reg                            iic_busy    =   0,                          //i2c忙碌,拉高时不进行操作inout        wire                           iic_sda,                                    //i2c数据总线output       reg                            sda_dg      =   1'b1                        //用于调试
);parameter               IDLE        =       4'd0;                                       //空闲状态parameter               START       =       4'd1;                                       //开始parameter               W_WAIT      =       4'd2;                                       //写入数据parameter               W_ACK       =       4'd3;                                       //写响应parameter               R_WAIT      =       4'd4;                                       //读取数据parameter               R_ACK       =       4'd5;                                       //读响应parameter               STOP1       =       4'd6;                                       //停止信号1parameter               STOP2       =       4'd7;                                       //停止信号2parameter               OFFSET      =       CLK_DIV - CLK_DIV/4;                        //产生i2c时钟reg         [2:0]       IIC_S       =       4'd0;                                       //i2c工作状态reg         [15:0]      clkdiv      =       16'd0;                                      //时钟分频计数器reg                     scl_clk     =       1'b0;                                       //i2c工作时钟reg                     scl_r       =       1'b1;                                       //i2c时钟寄存器reg                     sda_o       =       1'b0;                                       //sda输出reg         [7:0]       sda_r       =       8'd0;                                       //i2c数据寄存器reg         [7:0]       sda_i_r     =       8'd0;                                       //i2c输入数据寄存器reg         [7:0]       wcnt        =       8'd0;                                       //写数据计数reg         [7:0]       rcnt        =       8'd0;                                       //读数据计数reg         [2:0]       bcnt        =       3'd0;                                       //读写字节计数reg                     rd_en       =       1'b0;                                       //读使能reg                     iic_sda_r   =       1'b1;                                       //数据总线缓存wire                    scl_offset  =       (clkdiv == OFFSET);                         //scl delay output to fit timingwire                    sda_i;                                                          //i2c数据总线输入//利用计数器产生i2c驱动时钟always@(posedge clk_i)beginif(clkdiv < CLK_DIV)    clkdiv <= clkdiv + 1'b1;else beginclkdiv <= 16'd0; scl_clk <= !scl_clk;endend//三态门处理IOBUF #(.DRIVE(12), // Specify the output drive strength.IBUF_LOW_PWR("TRUE"),  // Low Power - "TRUE", High Performance = "FALSE" .IOSTANDARD("DEFAULT"), // Specify the I/O standard.SLEW("SLOW") // Specify the output slew rate) IOBUF_inst (.O(sda_i),    // Buffer output.IO(iic_sda), // Buffer inout port (connect directly to top-level port).I(sda_o),    // Buffer input.T(sda_o)     // 3-state enable input, high=input, low=output);//时钟总线输出    always @(posedge clk_i) iic_scl <=  scl_offset ?  scl_r : iic_scl;       PULLUP PULLUP_inst (.O(iic_sda));always @(*) beginif(IIC_S == IDLE || IIC_S == STOP1 || IIC_S == STOP2)scl_r <= 1'b1;else scl_r <= ~scl_clk;end   //sda output always @(*) beginif(IIC_S == START || IIC_S == STOP1 || (IIC_S == R_ACK && (rcnt != rd_cnt)))sda_o <= 1'b0;else if(IIC_S == W_WAIT)sda_o <= sda_r[7]; else  sda_o <= 1'b1;end   //sda输出转换always @(negedge scl_clk) beginif(IIC_S == W_ACK || IIC_S == START)beginsda_r <= wr_data[(wcnt*8) +: 8];if( rd_en ) sda_r <= {wr_data[7:1],1'b1};endelse if(IIC_S == W_WAIT)sda_r <= {sda_r[6:0],1'b1};else sda_r <= sda_r;end//sda输入转换  always @(posedge scl_clk) beginif(IIC_S == R_WAIT ||IIC_S == W_ACK ) beginsda_i_r <= {sda_i_r[6:0],sda_i};endelse if(IIC_S == R_ACK)rd_data[((rcnt-1'b1)*8) +: 8] <= sda_i_r[7:0];else if(IIC_S == IDLE)beginsda_i_r <= 8'd0;end endalways @(posedge scl_clk) iic_sda_r <= sda_i;always @(posedge clk_i) sda_dg <= sda_i;//iic状态机always @(negedge scl_clk)begincase(IIC_S) //sda = 1 scl =1IDLE://idle wait iic_en == 1'b1 start trasmit   rd_en == 1'b1 restart if(iic_en == 1'b1 || rd_en == 1'b1)begin iic_busy <= 1'b1;        IIC_S  <= START;endelse beginiic_busy <= 1'b0;wcnt <= 8'd0;rcnt <= 8'd0;rd_en <= 1'b0;endSTART:begin //sda = 0  then scl_clk =0 scl =0 generate startbcnt <= 3'd7;          IIC_S  <= W_WAIT;end           W_WAIT://write data beginif(bcnt > 3'd0)bcnt  <= bcnt - 1'b1; else beginwcnt <= wcnt + 1'b1; IIC_S  <= W_ACK;endend W_ACK://write data ackbegin if(wcnt < wr_cnt)begin bcnt <= 3'd7;IIC_S <= W_WAIT;endelse if(rd_cnt > 3'd0)begin// read dataif(rd_en == 1'b0 && iic_mode == 1'b1)begin rd_en <= 1'b1;IIC_S <= IDLE;  endelse IIC_S <= R_WAIT;bcnt <= 3'd7;endelseIIC_S <= STOP1; if(iic_sda_r == 1'b1)IIC_S <= STOP1;end  R_WAIT://read databeginrd_en <= 1'b0;bcnt  <= bcnt - 1'b1; if(bcnt == 3'd0)beginrcnt <= (rcnt < rd_cnt) ? (rcnt + 1'b1) : rcnt;IIC_S  <= R_ACK;endendR_ACK://read date ackbeginbcnt <= 3'd7;IIC_S <= (rcnt < rd_cnt) ? R_WAIT : STOP1; end  STOP1://sda = 0 scl = 1IIC_S <= STOP2;STOP2://sda = 1 scl = 1IIC_S <= IDLE;          default:IIC_S <= IDLE;endcase
endendmodule

2.adv7611寄存器数据

`timescale 1ns / 1psmodule ui7611reg(input               [8 :0]              REG_INDEX,                      //对已配置寄存器计数output          reg [31:0]              REG_DATA,                       //寄存器地址+写入数据output              [8 :0]              REG_SIZE                        //需配置寄存器个数
);assign	                                REG_SIZE    =   9'd182;//-----------------------------------------------------------------
/	Config Data REG	  //	
always@(*)
case(REG_INDEX)
//write Data Index0   : REG_DATA	=	{8'h98,8'hF4, 8'h80};	//Manufacturer ID Byte - High (Read only)1   : REG_DATA	=	{8'h98,8'hF5, 8'h7c};	//Manufacturer ID Byte - Low (Read only)2   : REG_DATA	= 	{8'h98,8'hF8, 8'h4c};	// BIT[7]-Reset all the Reg 3   : REG_DATA	= 	{8'h98,8'hF9, 8'h64};	//DC offset for analog process4   : REG_DATA	= 	{8'h98,8'hFA, 8'h6c};	//COM10 : href/vsync/pclk/data reverse(Vsync H valid)5   : REG_DATA	= 	{8'h98,8'hFB, 8'h68};	//VGA :	8'h22;	QVGA :	8'h3f;6   : REG_DATA	= 	{8'h98,8'hFD, 8'h44};	//VGA :	8'ha4;	QVGA :	8'h50;7   : REG_DATA	=	{8'h98,8'h01, 8'h05};	//VGA :	8'h07;	QVGA :	8'h03;8   : REG_DATA	= 	{8'h98,8'h00, 8'h1F};	//VGA :	8'hf0;	QVGA :	8'h78;9   : REG_DATA	= 	{8'h98,8'h02, 8'hF7};	//HREF	/ 8'h8010  : REG_DATA  = 	{8'h98,8'h03, 8'h40};	//VGA :	8'hA0;	QVGA :	8'hF011  : REG_DATA  = 	{8'h98,8'h04, 8'h42};	//VGA :	8'hF0;	QVGA :	8'h7812  : REG_DATA	=	{8'h98,8'h05, 8'h28};	//13  : REG_DATA	= 	{8'h98,8'h06, 8'ha7};	//14  : REG_DATA	= 	{8'h98,8'h0b, 8'h44};	//BIT[6] :	0 :VGA; 1;QVGA15  : REG_DATA	= 	{8'h98,8'h0C, 8'h42};	//16  : REG_DATA	= 	{8'h98,8'h15, 8'h80};	//17  : REG_DATA	= 	{8'h98,8'h19, 8'h8a};	//18  : REG_DATA	= 	{8'h98,8'h33, 8'h40};	//19  : REG_DATA	= 	{8'h98,8'h14, 8'h3f};	//20  : REG_DATA	= 	{8'h44,8'hba, 8'h01};	//21  : REG_DATA	= 	{8'h44,8'h7c, 8'h01};	//	22  : REG_DATA	= 	{8'h64,8'h40, 8'h81};	//DSP_Ctrl4 :00/01 : YUV or RGB; 10 : RAW8; 11 : RAW10		23  : REG_DATA	=	{8'h68,8'h9b, 8'h03};   //ADI recommanded setting24  : REG_DATA	=	{8'h68,8'hc1, 8'h01};	//ADI recommanded setting25  : REG_DATA	=	{8'h68,8'hc2, 8'h01};	//ADI recommanded setting26  : REG_DATA	=	{8'h68,8'hc3, 8'h01};	//ADI recommanded setting27  : REG_DATA	=	{8'h68,8'hc4, 8'h01};	//ADI recommanded setting28  : REG_DATA	=	{8'h68,8'hc5, 8'h01};	//ADI recommanded setting29  : REG_DATA	=	{8'h68,8'hc6, 8'h01};	//ADI recommanded setting30  : REG_DATA	=	{8'h68,8'hc7, 8'h01};	//ADI recommanded setting31  : REG_DATA	=	{8'h68,8'hc8, 8'h01};	//ADI recommanded setting32  : REG_DATA	=	{8'h68,8'hc9, 8'h01};	//ADI recommanded settin g33  : REG_DATA	=	{8'h68,8'hca, 8'h01};	//ADI recommanded setting34  : REG_DATA	=	{8'h68,8'hcb, 8'h01};	//ADI recommanded setting35  : REG_DATA	=	{8'h68,8'hcc, 8'h01};	//ADI recommanded setting36  : REG_DATA	=	{8'h68,8'h00, 8'h00}; 	//Set HDMI input Port A37  : REG_DATA	=	{8'h68,8'h83, 8'hfe};	//terminator for Port A38  : REG_DATA	=	{8'h68,8'h6f, 8'h08};	//ADI recommended setting39  : REG_DATA	=	{8'h68,8'h85, 8'h1f};	//ADI recommended setting40  : REG_DATA	=	{8'h68,8'h87, 8'h70};	//ADI recommended setting41  : REG_DATA	=	{8'h68,8'h8d, 8'h04};	//LFG42  : REG_DATA	=	{8'h68,8'h8e, 8'h1e};	//HFG43  : REG_DATA	=	{8'h68,8'h1a, 8'h8a};	//unmute audio44  : REG_DATA	=	{8'h68,8'h57, 8'hda};	// ADI recommended setting45  : REG_DATA	=	{8'h68,8'h58, 8'h01};46  : REG_DATA	=	{8'h68,8'h75, 8'h10}; 47  : REG_DATA	= 	{8'h68,8'h6c ,8'ha3};//enable manual HPA48  : REG_DATA	= 	{8'h98,8'h20 ,8'h70};//HPD low49  : REG_DATA	= 	{8'h64,8'h74 ,8'h00};//disable internal EDID 
//edid 
//0: REG_DATA	= 	{8'h68,8'h6c ,8'ha3}; enable manual HPA
//1: REG_DATA	= 	{8'h98,8'h20 ,8'h70};//HPD low
//2: REG_DATA	= 	{8'h64,8'h74 ,8'h00};//disable internal EDID  
//edid par50  : REG_DATA	= 	{8'h6c,8'd0  , 8'h00};51  : REG_DATA	= 	{8'h6c,8'd1  , 8'hFF};52  : REG_DATA	= 	{8'h6c,8'd2  , 8'hFF};53  : REG_DATA	= 	{8'h6c,8'd3  , 8'hFF};54  : REG_DATA	= 	{8'h6c,8'd4  , 8'hFF};55  : REG_DATA	= 	{8'h6c,8'd5  , 8'hFF};56  : REG_DATA	= 	{8'h6c,8'd6  , 8'hFF};57  : REG_DATA	= 	{8'h6c,8'd7  , 8'h00};58  : REG_DATA	= 	{8'h6c,8'd8  , 8'h20};59  : REG_DATA	= 	{8'h6c,8'd9  , 8'hA3};60  : REG_DATA	= 	{8'h6c,8'd10 , 8'h29};61  : REG_DATA	= 	{8'h6c,8'd11 , 8'h00};62  : REG_DATA	= 	{8'h6c,8'd12 , 8'h01};63  : REG_DATA	= 	{8'h6c,8'd13 , 8'h00};64  : REG_DATA	= 	{8'h6c,8'd14 , 8'h00};65  : REG_DATA	= 	{8'h6c,8'd15 , 8'h00};66  : REG_DATA	= 	{8'h6c,8'd16 , 8'h23};67  : REG_DATA	= 	{8'h6c,8'd17 , 8'h12};68  : REG_DATA	= 	{8'h6c,8'd18 , 8'h01};69  : REG_DATA	= 	{8'h6c,8'd19 , 8'h03};70  : REG_DATA	= 	{8'h6c,8'd20 , 8'h80};71  : REG_DATA	= 	{8'h6c,8'd21 , 8'h73};72  : REG_DATA	= 	{8'h6c,8'd22 , 8'h41};73  : REG_DATA	= 	{8'h6c,8'd23 , 8'h78};74  : REG_DATA	= 	{8'h6c,8'd24 , 8'h0A};75  : REG_DATA	= 	{8'h6c,8'd25 , 8'hF3};76  : REG_DATA	= 	{8'h6c,8'd26 , 8'h30};77  : REG_DATA	= 	{8'h6c,8'd27 , 8'hA7};78  : REG_DATA	= 	{8'h6c,8'd28 , 8'h54};79  : REG_DATA	= 	{8'h6c,8'd29 , 8'h42};80  : REG_DATA	= 	{8'h6c,8'd30 , 8'hAA};81  : REG_DATA	= 	{8'h6c,8'd31 , 8'h26};82  : REG_DATA	= 	{8'h6c,8'd32 , 8'h0F};83  : REG_DATA	= 	{8'h6c,8'd33 , 8'h50};84  : REG_DATA	= 	{8'h6c,8'd34 , 8'h54};85  : REG_DATA	= 	{8'h6c,8'd35 , 8'h25};86  : REG_DATA	= 	{8'h6c,8'd36 , 8'hC8};87  : REG_DATA	= 	{8'h6c,8'd37 , 8'h00};88  : REG_DATA	= 	{8'h6c,8'd38 , 8'h61};89  : REG_DATA	= 	{8'h6c,8'd39 , 8'h4F};90  : REG_DATA	= 	{8'h6c,8'd40 , 8'h01};91  : REG_DATA	= 	{8'h6c,8'd41 , 8'h01};92  : REG_DATA	= 	{8'h6c,8'd42 , 8'h01};93  : REG_DATA	= 	{8'h6c,8'd43 , 8'h01};94  : REG_DATA	= 	{8'h6c,8'd44 , 8'h01};95  : REG_DATA	= 	{8'h6c,8'd45 , 8'h01};96  : REG_DATA	= 	{8'h6c,8'd46 , 8'h01};97  : REG_DATA	= 	{8'h6c,8'd47 , 8'h01};98  : REG_DATA	= 	{8'h6c,8'd48 , 8'h01};99  : REG_DATA	= 	{8'h6c,8'd49 , 8'h01};100  : REG_DATA	= 	{8'h6c,8'd50 , 8'h01};101  : REG_DATA	= 	{8'h6c,8'd51 , 8'h01};102  : REG_DATA	= 	{8'h6c,8'd52 , 8'h01};103  : REG_DATA	= 	{8'h6c,8'd53 , 8'h01};104  : REG_DATA	= 	{8'h6c,8'd54 , 8'h02};105  : REG_DATA	= 	{8'h6c,8'd55 , 8'h3A};106  : REG_DATA	= 	{8'h6c,8'd56 , 8'h80};107  : REG_DATA	= 	{8'h6c,8'd57 , 8'h18};108  : REG_DATA	= 	{8'h6c,8'd58 , 8'h71};109  : REG_DATA	= 	{8'h6c,8'd59 , 8'h38};110  : REG_DATA	= 	{8'h6c,8'd60 , 8'h2D};111  : REG_DATA	= 	{8'h6c,8'd61 , 8'h40};112  : REG_DATA	= 	{8'h6c,8'd62 , 8'h58};113  : REG_DATA	= 	{8'h6c,8'd63 , 8'h2C};114  : REG_DATA	= 	{8'h6c,8'd64 , 8'h45};115  : REG_DATA	= 	{8'h6c,8'd65 , 8'h00};116  : REG_DATA	= 	{8'h6c,8'd66 , 8'h80};117  : REG_DATA	= 	{8'h6c,8'd67 , 8'h88};118  : REG_DATA	= 	{8'h6c,8'd68 , 8'h42};119  : REG_DATA	= 	{8'h6c,8'd69 , 8'h00};120  : REG_DATA	= 	{8'h6c,8'd70 , 8'h00};121  : REG_DATA	= 	{8'h6c,8'd71 , 8'h1E};122  : REG_DATA	= 	{8'h6c,8'd72 , 8'h8C};123  : REG_DATA	= 	{8'h6c,8'd73 , 8'h0A};124  : REG_DATA	= 	{8'h6c,8'd74 , 8'hD0};125  : REG_DATA	= 	{8'h6c,8'd75 , 8'h8A};126  : REG_DATA	= 	{8'h6c,8'd76 , 8'h20};127  : REG_DATA	= 	{8'h6c,8'd77 , 8'hE0};128  : REG_DATA	= 	{8'h6c,8'd78 , 8'h2D};129  : REG_DATA	= 	{8'h6c,8'd79 , 8'h10};130  : REG_DATA	= 	{8'h6c,8'd80 , 8'h10};131  : REG_DATA	= 	{8'h6c,8'd81 , 8'h3E};132  : REG_DATA	= 	{8'h6c,8'd82 , 8'h96};133  : REG_DATA	= 	{8'h6c,8'd83 , 8'h00};134  : REG_DATA	= 	{8'h6c,8'd84 , 8'h80};135  : REG_DATA	= 	{8'h6c,8'd85 , 8'h88};136  : REG_DATA	= 	{8'h6c,8'd86 , 8'h42};137  : REG_DATA	= 	{8'h6c,8'd87 , 8'h00};138  : REG_DATA	= 	{8'h6c,8'd88 , 8'h00};139  : REG_DATA	= 	{8'h6c,8'd89 , 8'h18};140  : REG_DATA	= 	{8'h6c,8'd90 , 8'h00};141  : REG_DATA	= 	{8'h6c,8'd91 , 8'h00};142  : REG_DATA	= 	{8'h6c,8'd92 , 8'h00};143  : REG_DATA	= 	{8'h6c,8'd93 , 8'hFC};144  : REG_DATA	= 	{8'h6c,8'd94 , 8'h00};145  : REG_DATA	= 	{8'h6c,8'd95 , 8'h48};146  : REG_DATA	= 	{8'h6c,8'd96 , 8'h44};147  : REG_DATA	= 	{8'h6c,8'd97 , 8'h4D};148  : REG_DATA	= 	{8'h6c,8'd98 , 8'h49};149  : REG_DATA	= 	{8'h6c,8'd99 , 8'h20};150  : REG_DATA	= 	{8'h6c,8'd100 , 8'h20};151  : REG_DATA	= 	{8'h6c,8'd101 , 8'h20};152  : REG_DATA	= 	{8'h6c,8'd102 , 8'h20};153  : REG_DATA	= 	{8'h6c,8'd103 , 8'h0A};154  : REG_DATA	= 	{8'h6c,8'd104 , 8'h20};155  : REG_DATA	= 	{8'h6c,8'd105 , 8'h20};156  : REG_DATA	= 	{8'h6c,8'd106 , 8'h20};157  : REG_DATA	= 	{8'h6c,8'd107 , 8'h20};158  : REG_DATA	= 	{8'h6c,8'd108 , 8'h00};159  : REG_DATA	= 	{8'h6c,8'd109 , 8'h00};160  : REG_DATA	= 	{8'h6c,8'd110 , 8'h00};161  : REG_DATA	= 	{8'h6c,8'd111 , 8'hFD};162  : REG_DATA	= 	{8'h6c,8'd112 , 8'h00};163  : REG_DATA	= 	{8'h6c,8'd113 , 8'h32};164  : REG_DATA	= 	{8'h6c,8'd114 , 8'h55};165  : REG_DATA	= 	{8'h6c,8'd115 , 8'h1F};166  : REG_DATA	= 	{8'h6c,8'd116 , 8'h45};167  : REG_DATA	= 	{8'h6c,8'd117 , 8'h0F};168  : REG_DATA	= 	{8'h6c,8'd118 , 8'h00};169  : REG_DATA	= 	{8'h6c,8'd119 , 8'h0A};170  : REG_DATA	= 	{8'h6c,8'd120 , 8'h20};171  : REG_DATA	= 	{8'h6c,8'd121 , 8'h20};172  : REG_DATA	= 	{8'h6c,8'd122 , 8'h20};173  : REG_DATA	= 	{8'h6c,8'd123 , 8'h20};174  : REG_DATA	= 	{8'h6c,8'd124 , 8'h20};175  : REG_DATA	= 	{8'h6c,8'd125 , 8'h20};176  : REG_DATA	= 	{8'h6c,8'd126 , 8'h01};177  : REG_DATA	= 	{8'h6c,8'd127 , 8'h24};178  : REG_DATA	= 	{8'h64,8'h74  , 8'h01};// enable internal EDID179  : REG_DATA	= 	{8'h98,8'h20  , 8'hf0};// HPD high180  : REG_DATA	= 	{8'h68,8'h6c  , 8'ha2};// disable manual HPA	181  : REG_DATA	=   {8'h98,8'hf4  , 8'h00};default:REG_DATA =0;
endcaseendmodule

3.配置模块顶层

`timescale 1ns / 1psmodule uicfg7611#(parameter	        CLK_DIV         =           16'd999
)
(input                                   clk_i,                                          //系统时钟input                                   rst_n,                                          //系统复位output                                  adv_scl,                                        //i2c时钟总线inout                                   adv_sda,                                        //i2c数据总线output reg                              cfg_done                                        //寄存器配置完成信号
);	reg                     [8 :0]          rst_cnt     =   9'd0;                           //延迟复位计数器reg                                     iic_en;                                         //i2c使能信号reg                     [31:0]          wr_data;                                        //寄存器地址+写入数据reg                     [1 :0]          TS_S        =   2'd0;                           //状态机工作状态reg                     [8 :0]          byte_cnt    =   9'd0;                           //读写字节计数器reg                     [8 :0]          REG_INDEX;                                      //寄存器配置wire                                    iic_busy;                                       //i2c忙碌wire                    [23:0]          REG_DATA;wire                    [8 :0]          REG_SIZE;always@(posedge clk_i) beginif(!rst_n)rst_cnt <= 9'd0;else if(!rst_cnt[8]) rst_cnt <= rst_cnt + 1'b1;end//状态机工作状态转换以及输出always@(posedge clk_i) beginif(!rst_cnt[8])beginREG_INDEX<= 9'd0;iic_en  <= 1'b0;wr_data <= 32'd0;cfg_done<= 1'b0;TS_S    <= 2'd0;    endelse begincase(TS_S)0:if(cfg_done == 1'b0)TS_S <= 2'd1;1:if(!iic_busy)begin//write dataiic_en  <= 1'b1; wr_data[7  :0] <= REG_DATA[23:16];   wr_data[15 :8] <= REG_DATA[15: 8];   wr_data[23:16] <= REG_DATA[7 : 0];endelse TS_S    <= 2'd2;2:beginiic_en  <= 1'b0; if(!iic_busy)begin REG_INDEX<= REG_INDEX + 1'b1;TS_S    <= 2'd3;endend3:begin//read rtc registerif(REG_INDEX == REG_SIZE)begincfg_done <= 1'b1;endTS_S 	<= 2'd0;end endcaseend
enduii2c#(.WMEN_LEN(4),.RMEN_LEN(1),.CLK_DIV(CLK_DIV)//499 for 50M 999 for 100M)uii2c_inst(.clk_i(clk_i),.iic_scl(adv_scl),.iic_sda(adv_sda),.wr_data(wr_data),.wr_cnt(8'd3),//write data max len = 4BYTES.rd_data(),   //read not used.rd_cnt(8'd0),//read not used.iic_mode(1'b0),.iic_en(iic_en),.iic_busy(iic_busy));//7611regui7611reg  ui7611reg_inst(.REG_SIZE(REG_SIZE),.REG_INDEX(REG_INDEX),.REG_DATA(REG_DATA));   endmodule

二.HDMI输出

1.TMDS编码

module TMDSEncoder(input									    clk		        ,//系统时钟信号;input									    rst  	        ,//系统复位信号,高电平有效;input				[7 : 0]	                din		        ,//输入待编码数据input                                       c0              ,//控制信号C0input                                       c1              ,//控制信号c1input                                       de              ,//输入数据有效指示信号;output reg			[9 : 0]	                q_out	         //编码输出数据
);localparam          CTRLTOKEN0      =       10'b1101010100  ;localparam          CTRLTOKEN1      =       10'b0010101011  ;localparam          CTRLTOKEN2      =       10'b0101010100  ;localparam          CTRLTOKEN3      =       10'b1010101011  ;reg                 [7 : 0]                 din_r           ;//reg                 [1 : 0]                 de_r,c0_r,c1_r  ;reg                 [3 : 0]                 n1d,n1q_m,n0q_m ;reg                 [5 : 0]                 cnt             ;reg                 [8 : 0]                 q_m_r           ;wire                [8 : 0]                 q_m             ;//wire                                        condition1      ;wire                                        condition2      ;wire                                        condition3      ;//统计待编码输入数据中1的个数,最多8个1,所以位宽为4。always@(posedge clk)beginif(rst)begin//初始值为0;n1d <= 4'd0;endelse if(de)begin//当DE为高电平,统计输入数据中1的个数。n1d <= din[0] + din[1] + din[2] + din[3] + din[4] + din[5] + din[6] + din[7];endelse begin//当DE为低电平时,对控制信号编码,此时不需要统计输入信号中1的个数,故清零。n1d <= 4'd0;endend//移位寄存器将输入数据暂存,与后续信号对齐。always@(posedge clk)begindin_r   <= din;de_r    <= {de_r[0],de};c0_r    <= {c0_r[0],c0};c1_r    <= {c1_r[0],c1};q_m_r   <= q_m;end//判断条件1,输入数据1的个数多余4或者1的个数等于4并且最低位为0时拉高,其余时间拉低。assign condition1 = ((n1d > 4'd4) || ((n1d == 4'd4) && (~din_r[0])));//对输入的信号进行异或运算。assign q_m[0] = din_r[0];assign q_m[1] = condition1 ? ~((q_m[0] ^ din_r[1])) : (q_m[0] ^ din_r[1]);assign q_m[2] = condition1 ? ~((q_m[1] ^ din_r[2])) : (q_m[1] ^ din_r[2]);assign q_m[3] = condition1 ? ~((q_m[2] ^ din_r[3])) : (q_m[2] ^ din_r[3]);assign q_m[4] = condition1 ? ~((q_m[3] ^ din_r[4])) : (q_m[3] ^ din_r[4]);assign q_m[5] = condition1 ? ~((q_m[4] ^ din_r[5])) : (q_m[4] ^ din_r[5]);assign q_m[6] = condition1 ? ~((q_m[5] ^ din_r[6])) : (q_m[5] ^ din_r[6]);assign q_m[7] = condition1 ? ~((q_m[6] ^ din_r[7])) : (q_m[6] ^ din_r[7]);assign q_m[8] = ~condition1;always@(posedge clk)beginif(rst)begin//初始值为0;n1q_m <= 4'd0;n0q_m <= 4'd0;endelse if(de_r[0])begin//对输入有效数据时,q_m中1和0的个数进行统计;n1q_m <= q_m[0] + q_m[1] + q_m[2] + q_m[3] + q_m[4] + q_m[5] + q_m[6] + q_m[7];n0q_m <= 4'd8 - (q_m[0] + q_m[1] + q_m[2] + q_m[3] + q_m[4] + q_m[5] + q_m[6] + q_m[7]);endelse begin//输入数据无效时清零。n1q_m <= 4'd0;n0q_m <= 4'd0;endend//判断条件2,一行已编码数据中1的个数等于0的个数或者本次编码数据中1的个数等于0的个数。assign condition2 = ((cnt == 6'd0) || (n1q_m == n0q_m));//判断条件3,已编码数据中1的多余0并且本次编码中间数据1的个数也多与0的个数或者已编码数据中0的个数较多并且此次编码中0的个数也比较多时拉高,其余时间拉低。assign condition3 = (((~cnt[5]) && (n1q_m > n0q_m)) || (cnt[5] && (n1q_m < n0q_m)));always@(posedge clk)beginif(rst)begin//初始值为0;cnt <= 6'd0;q_out <= 10'd0;endelse if(de_r[1])beginq_out[8] <= q_m_r[8];//第8位为编码方式位,直接输出即可。if(condition2)beginq_out[9] <= ~q_m_r[8];q_out[7:0] <= q_m_r[8] ? q_m_r[7:0] : ~q_m_r[7:0];//进行cnt的计算;cnt <= q_m_r[8] ? (cnt + n1q_m - n0q_m) : (cnt + n0q_m - n1q_m);endelse if(condition3)beginq_out[9] <= 1'b1;q_out[7:0] <= ~q_m_r[7:0];//进行cnt的计算;cnt <= cnt + {q_m_r[8],1'b0} + n0q_m - n1q_m;endelse beginq_out[9] <= 1'b0;q_out[7:0] <= q_m_r[7:0];//进行cnt的计算;cnt <= cnt - {~q_m_r[8],1'b0} + n1q_m - n0q_m;endendelse begincnt <= 6'd0;//对控制信号进行编码时,将计数器清零。case ({c1_r[1],c0_r[1]})2'b00   : q_out <= CTRLTOKEN0;2'b01   : q_out <= CTRLTOKEN1;2'b10   : q_out <= CTRLTOKEN2;2'b11   : q_out <= CTRLTOKEN3;endcaseendendendmodule

2.并串转换以及差分输出

`timescale 1ns / 1psmodule oserdese2_10to1(input                [9:0]             txdata,                                      //输入并行10位数据input                                  pclk,                                        //并行数据时钟input                                  clkdiv2,                                     //并串转换时钟input                                  txrst,                                       //复位信号output                                 tx_p,                                        //差分输出output                                 tx_n
); wire                 [13:0]            tx_data;wire                                   cascade_do, cascade_di, cascade_to, cascade_ti;reg                                    int_rst;wire                                   dai;assign tx_data = {4'd0,txdata[9:0]};                                                //最高支持14位并串转换always @(*)if(txrst == 1'b1)int_rst <= 1'b1;else if(pclk)int_rst <= 1'b0;else int_rst <= int_rst;OBUFDS #(.IOSTANDARD("DEFAULT"), // Specify the output I/O standard.SLEW("SLOW")           // Specify the output slew rate) OBUFDS_inst (.O(tx_p),     // Diff_p output (connect directly to top-level port).OB(tx_n),   // Diff_n output (connect directly to top-level port).I(dai)      // Buffer input);//----------------------------------------------------------------------------------
//-- Cascaded OSERDES for 10:1 ratio (DDR)
//----------------------------------------------------------------------------------
OSERDESE2 #(.DATA_RATE_OQ("DDR"),   // DDR, SDR.DATA_RATE_TQ("SDR"),   // DDR, BUF, SDR.DATA_WIDTH(10),         // Parallel data width (2-8,10,14).SERDES_MODE("MASTER"), // MASTER, SLAVE.TRISTATE_WIDTH(1)      // 3-state converter width (1,4))oserdese2_master (// D1 - D8: 1-bit (each) input: Parallel data inputs (1-bit each).D1(tx_data[0]),.D2(tx_data[1]),.D3(tx_data[2]),.D4(tx_data[3]),.D5(tx_data[4]),.D6(tx_data[5]),.D7(tx_data[6]),.D8(tx_data[7]),  // T1 - T4: 1-bit (each) input: Parallel 3-state inputs.T1(1'b0),.T2(1'b0),.T3(1'b0),.T4(1'b0), // SHIFTIN1 / SHIFTIN2: 1-bit (each) input: Data input expansion (1-bit each).SHIFTIN1(cascade_di),.SHIFTIN2(cascade_ti),// SHIFTOUT1 / SHIFTOUT2: 1-bit (each) output: Data output expansion (1-bit each).SHIFTOUT1(),.SHIFTOUT2(),   .OCE(1'b1),             // 1-bit input: Output data clock enable    .CLK(clkdiv2),        // 1-bit input: High speed clock.CLKDIV(pclk),     // 1-bit input: Divided clock                       .OQ(dai),               // 1-bit output: Data path output.TQ(),               // 1-bit output: 3-state control.OFB(),             // 1-bit output: Feedback path for data.TBYTEIN(1'b0),     // 1-bit input: Byte group tristate      .TBYTEOUT(),   // 1-bit output: Byte group tristate.TFB(),             // 1-bit output: 3-state control.TCE(1'b0),          // 1-bit input: 3-state clock enable      .RST(int_rst)             // 1-bit input: Reset);OSERDESE2 #(.DATA_RATE_OQ("DDR"),   // DDR, SDR.DATA_RATE_TQ("SDR"),   // DDR, BUF, SDR.DATA_WIDTH(10),         // Parallel data width (2-8,10,14).SERDES_MODE("SLAVE"), // MASTER, SLAVE.TRISTATE_WIDTH(1)      // 3-state converter width (1,4))oserdese2_slave (// D1 - D8: 1-bit (each) input: Parallel data inputs (1-bit each).D1(1'b0),.D2(1'b0),.D3(tx_data[8]),.D4(tx_data[9]),.D5(tx_data[10]),.D6(tx_data[11]),.D7(tx_data[12]),.D8(tx_data[13]),  // T1 - T4: 1-bit (each) input: Parallel 3-state inputs.T1(1'b0),.T2(1'b0),.T3(1'b0),.T4(1'b0), // SHIFTOUT1 / SHIFTOUT2: 1-bit (each) output: Data output expansion (1-bit each).SHIFTOUT1(cascade_di),.SHIFTOUT2(cascade_ti),         // SHIFTIN1 / SHIFTIN2: 1-bit (each) input: Data input expansion (1-bit each).SHIFTIN1(1'b0),.SHIFTIN2(1'b0),.OCE(1'b1),             // 1-bit input: Output data clock enable    .CLK(clkdiv2),        // 1-bit input: High speed clock.CLKDIV(pclk),     // 1-bit input: Divided clock                       .OQ(),               // 1-bit output: Data path output.TQ(),               // 1-bit output: 3-state control.OFB(),             // 1-bit output: Feedback path for data.TFB(),             // 1-bit output: 3-state control.TBYTEIN(1'b0),     // 1-bit input: Byte group tristate      .TBYTEOUT(),   // 1-bit output: Byte group tristate.TCE(1'b0),          // 1-bit input: 3-state clock enable      .RST(int_rst)             // 1-bit input: Reset); endmodule

三.顶层模块

`timescale 1ns / 1psmodule top(input                                               clk_i,                              //系统时钟input                                               hs_i,                               //行同步信号input                                               vs_i,                               //场同步信号input                                               de_i,                               //数据有效信号input                                               pclk_i,                             //像素时钟input               [23:0]                          rgb_i,                              //输入图像数据output                                              adv_rst,                            //adv7611复位信号output                                              adv_scl,                            //时钟总线inout                                               adv_sda,                            //数据总线output                                              HDMI_CLK_P,                         //差分时钟输出output                                              HDMI_CLK_N,output              [2:0]                           HDMI_TX_P,                          //差分数据输出output              [2:0]                           HDMI_TX_N
);assign                                              adv_rst = 1'b1;                     wire                                                cfg_done;                           //寄存器配置完成信号wire                                                locked ;                            //锁相环工作完成信号wire                                                pclkx1,pclkx5;                      //锁相环输出时钟reg                                                 hs_r_0,hs_r_1,hs_r;                 reg                                                 vs_r_0,vs_r_1,vs_r;reg                                                 de_r_0,de_r_1,de_r;reg                 [23:0]                          rgb_r_0;reg                 [23:0]                          rgb_r_1;reg                 [23:0]                          rgb_r;wire                                                rst_o1,rst_o2;wire                                                vid_rst,vid_clk,vid_vs,vid_hs,vid_de;reg                                                 tpg_vs_r = 1'b0;reg                                                 tpg_hs_r = 1'b0;clk_wiz_0 clk_wiz_inst(.clk_out1(pclkx1),.clk_out2(pclkx5),.locked(locked), .clk_in1(pclk_i));uihdmitx uihdmitx_inst
(
.RSTn_i(cfg_done&&locked),
.HS_i(hs_i),
.VS_i(vs_i),
.VDE_i(de_i),
.RGB_i({rgb_i[7:0],rgb_i[15:8],rgb_i[23:16]}),
.PCLKX1_i(pclkx1),
.PCLKX2_5_i(1'b0),
.PCLKX5_i(pclkx5),
.TMDS_TX_CLK_P(HDMI_CLK_P),
.TMDS_TX_CLK_N(HDMI_CLK_N),
.TMDS_TX_P(HDMI_TX_P),
.TMDS_TX_N(HDMI_TX_N)
);uicfg7611 uicfg7611_inst
(
.clk_i(clk_i),
.rst_n(1'b1), 
.adv_scl(adv_scl),
.adv_sda(adv_sda),
.cfg_done(cfg_done)
);endmodule

四.板级验证

这篇关于FPGA实现HDMI传输(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1118027

相关文章

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如