基于DashScope+Streamlit构建你的机器学习助手(入门级)

2024-08-29 11:28

本文主要是介绍基于DashScope+Streamlit构建你的机器学习助手(入门级),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在LLM(大语言模型)盛行的今天,博主越来越感觉到AI(人工智能)的潜力被“无限”激发了。它为什么会突然间完成“鱼跃龙门”呢? 博主认为基础设施(也可以称为算力)的完善和“天才”式的构思,是本次“盛宴”的幕后功臣。一个点子,可以改变一个领域,甚至重塑我们的工作习惯和生活方式。我想LLM作为AI新势力,有可能改变整个AI的生态。

今天,博主通过一个示例,带领各位亲自构建一个大模型应用。说起应用,我想各位应该能够理解了。比如一个聊天机器人、一个翻译助手,一个问答助手、又比如是一个创作助手等。那么本文就以一个简单的大模型为基础,构建一个属于你自己的机器学习助手。

首先来看这个小助手的“五脏六腑”是什么,跟着博主来一趟揭秘之旅吧。

一、DashScope入门

DashScope(模型服务灵积)是阿里推出的一款模型服务:

它通过围绕模型为中心,致力于为AI应用开发者提供品类丰富、数量众多的模型选择,并通过API接口为其提供开箱即用、能力卓越、成本经济的模型服务。各领域模型的能力均可通过DashScope统一的API和SDK来实现被不同业务系统集成,AI应用开发和模型效果调优的效率将因此得以激发,助力开发者释放灵感、创造价值。

一句话总结:这是一款模型框架,你可以通过它的API或SDK调用已内置的模型,创建自己的大模型应用。

博主曾经有一篇文章(基于Python的大模型学习手册(入门级))对DashScope SDK方式进行了介绍,可以参考它快速完成安装调试,这里不再赘述了。

接下来小助手需要一个face(门面),我们就选择Streamlit吧。

二、Streamlit入门

在这里插入图片描述

1. 简介

Streamlit is an open-source Python framework for data scientists and AI/ML engineers to deliver dynamic data apps with only a few lines of code.

一句话总结:Streamlit是一个开源的python框架,你通过几行代码就可以快速构建一个基于动态数据的应用,常用于数据科学和AI/ML工程领域。

2. 安装

pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple streamlit 

安装完成后,可在pycharm的terminal窗口,输入: streamlit hello,回车后,根据提示打开浏览器,访问默认demo:
在这里插入图片描述
打开页面如下,我们可以点击左侧导航,体验一番:
Hello
在这里插入图片描述
Animation_Demo
在这里插入图片描述
Plotting_Demo
在这里插入图片描述

至此,我们已备齐所有的必需工具,开始构建你的专属助手吧。

三、构建一个专属的问答助手

1. 设计前端

基于Streamlit组件,我们先简单设计一下前端的页面,一个输入框,一个提交按钮。效果如下:
在这里插入图片描述
核心代码:

    st.title('机器学习助手')with st.form('问答form'):text = st.text_area('请输入问题:')submitted = st.form_submit_button('提交')

2. 嵌入模型

博主选择阿里的通义千问大模型qwen-turbo,作为小助手的“知识引擎”。核心代码如下:

messages = [{'role': 'system', 'content': '你是一个优秀的机器学习专家'},{'role': 'user', 'content': input}]
responses = Generation.call(model="qwen-turbo",messages=messages,temperature=0.5,stream=True, # 支持流式输出incremental_output=True,# 设置为True,将开启增量输出模式,后面输出不会包含已经输出的内容result_format='message')

3. 流式输出

支持小助手像打字机一样,逐字输出,提高使用体验。当然前提是完成模型设置。输出的核心代码:

ans = st.empty()
full_content = ''
for response in responses:if response.status_code == HTTPStatus.OK:full_content += response.output.choices[0]['message']['content']ans.info(full_content)# yield full_contentelse:print('Request id: %s, Status code: %s, error code: %s, error message: %s' % (response.request_id, response.status_code,response.code, response.message))

4. 部署运行

我们通过pycharm—Terminal窗口,只需输入 streamlit run [绝对路径]/xx.py,回车就能访问了,如下图所示:
在这里插入图片描述
在这里插入图片描述

5. 问答演示

在这里插入图片描述
至此,你轻松收获了一个属于你自己的大模型应用,一个简易版的机器学习问答助手。

6. 完整代码

import dashscope
from http import HTTPStatus
from dashscope import Generation
import streamlit as stdashscope.api_key = "你的dashscope api key"def call_with_messages(input):messages = [{'role': 'system', 'content': '你是一个优秀的机器学习专家'},{'role': 'user', 'content': input}]responses = Generation.call(model="qwen-turbo",messages=messages,temperature=0.5,stream=True, # 支持流式输出incremental_output=True,# 设置为True,将开启增量输出模式,后面输出不会包含已经输出的内容result_format='message')ans = st.empty()full_content = ''for response in responses:if response.status_code == HTTPStatus.OK:full_content += response.output.choices[0]['message']['content']ans.info(full_content)# yield full_contentelse:print('Request id: %s, Status code: %s, error code: %s, error message: %s' % (response.request_id, response.status_code,response.code, response.message))if __name__ == '__main__':st.title('机器学习助手')with st.form('问答form'):text = st.text_area('请输入问题:')submitted = st.form_submit_button('提交')if submitted:# st.write_stream(call_with_messages(text))call_with_messages(text)

结语

通过DashScope+Streamlit组合,我们可以轻松create一个大模型应用。相信通过此文,你可以get人生第一个大模型之体验!

走过的,路过的,点点赞,收收藏哦,欢迎指导!


精彩回顾

基于LangChain的大模型学习手册(入门级)
基于Python的大模型学习手册(入门级)


在这里插入图片描述

这篇关于基于DashScope+Streamlit构建你的机器学习助手(入门级)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1117726

相关文章

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Golang使用etcd构建分布式锁的示例分享

《Golang使用etcd构建分布式锁的示例分享》在本教程中,我们将学习如何使用Go和etcd构建分布式锁系统,分布式锁系统对于管理对分布式系统中共享资源的并发访问至关重要,它有助于维护一致性,防止竞... 目录引言环境准备新建Go项目实现加锁和解锁功能测试分布式锁重构实现失败重试总结引言我们将使用Go作

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了