华为OD机试 - 分解连续正整数组合 - 数学推导(Java 2024 E卷 100分)

2024-08-29 10:44

本文主要是介绍华为OD机试 - 分解连续正整数组合 - 数学推导(Java 2024 E卷 100分),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

华为OD机试 2024E卷题库疯狂收录中,刷题点这里

专栏导读

本专栏收录于《华为OD机试(JAVA)真题(E卷+D卷+A卷+B卷+C卷)》。

刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新,全天CSDN在线答疑。

一、题目描述

给定一个正整数 n,如果能够分解为 m (m > 1) 个连续正整数之和,请输出所有分解中,m 最小的分解。

如果给定整数无法分解为连续正整数x,则输出字符串 “N”。

二、输入描述

输入数据为一整数 n,范围为 (1, 2^30]

三、输出描述

比如输入21,则输出21=10+11

四、测试用例

测试用例1:

1、输入

21

2、输出

21=10+11

3、说明

21可以分解的连续正整数组合的形式有多种:

21 = 1 + 2 + 3 + 4 + 5 + 6

21 = 6 + 7 + 8

21 = 10 + 11

其中 21 = 10 + 11,是最短的分解序列。

测试用例2:

1、输入

24

2、输出

24 = 7 + 8 + 9

3、说明

五、解题思路

数学推导

假设 n 可以表示为 m 个连续正整数之和,设这些整数从 x 开始,形式为 x, x+1, x+2, …, x+(m-1)。

那么 n 的表达式为:n=x+(x+1)+(x+2)+...+(x+m−1)

这个和可以被化简为:

n = m × x + m × ( m − 1 ) 2 n = m \times x + \frac{m \times (m - 1)}{2} n=m×x+2m×(m1)

​进一步变换可以得到:

m × x = n − m × ( m − 1 ) 2 m \times x = n - \frac{m \times (m - 1)}{2} m×x=n2m×(m1)

要使 x 为正整数,n - \frac{m \times (m - 1)}{2} 必须是 m 的倍数,且 x 也必须是正数。

遍历寻找最小的 m

从 m = 2 开始遍历,依次计算 x,判断 x 是否为正整数且大于零。

如果找到这样的 x,输出该分解形式,并结束程序。

如果在所有可能的 m 中都没有找到合适的 x,则输出 “N”。

六、Java算法源码

public class OdTest01 {public static void main(String[] args) {Scanner scanner = new Scanner(System.in);long n = scanner.nextLong();scanner.close();// 从m = 2开始遍历,尝试找到最小的分解for (long m = 2; m * (m - 1) / 2 < n; m++) {// 计算xlong remainder = n - (m * (m - 1)) / 2;if (remainder % m == 0) {long x = remainder / m;if (x > 0) {printResult(n, x, m);return;}}}// 如果没有找到符合条件的m和x,输出NSystem.out.println("N");}// 打印结果 n = x + (x+1) + ... + (x+m-1)private static void printResult(long n, long x, long m) {StringBuilder result = new StringBuilder();result.append(n).append(" = ");for (long i = 0; i < m; i++) {if (i > 0) {result.append(" + ");}result.append(x + i);}System.out.println(result.toString());}
}

七、效果展示

1、输入

18

2、输出

18 = 5 + 6 + 7

3、说明

数学推导

假设 18 可以分解为 m 个连续正整数的和,设这些整数从 x 开始,形式为 x, x+1, x+2, …, x+(m-1)。

根据公式:

n = m × x + m × ( m − 1 ) 2 n = m \times x + \frac{m \times (m - 1)}{2} n=m×x+2m×(m1)

化简为:

m × x = n − m × ( m − 1 ) 2 m \times x = n - \frac{m \times (m - 1)}{2} m×x=n2m×(m1)

我们需要找到最小的 m 使得 x 是正整数。

逐步计算 m 的值:

当 m = 2 时:

x = 18 − 2 × ( 2 − 1 ) 2 2 = 18 − 1 2 = 17 2 = 8.5 x = \frac{18 - \frac{2 \times (2 - 1)}{2}}{2} = \frac{18 - 1}{2} = \frac{17}{2} = 8.5 x=21822×(21)=2181=217=8.5

不是整数,不符合

当 m = 3 时:

x = 18 − 3 × ( 3 − 1 ) 2 3 = 18 − 3 3 = 15 3 = 5 x = \frac{18 - \frac{3 \times (3 - 1)}{2}}{3} = \frac{18 - 3}{3} = \frac{15}{3} = 5 x=31823×(31)=3183=315=5

是整数,符合。

因此,m = 3 时,x = 5 是一个符合条件的解。

当 m = 3 且 x = 5 时,连续的三个正整数分别为 5, 6, 7,它们的和为:

5 + 6 + 7 = 18

这说明 18 可以分解为 5, 6, 7 三个连续正整数的和。

在这里插入图片描述


🏆下一篇:华为OD机试 - 简易内存池 - 逻辑分析(Java 2024 D卷 200分)

🏆本文收录于,华为OD机试(JAVA)真题(E卷+D卷+A卷+B卷+C卷)

刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新,全天CSDN在线答疑。

在这里插入图片描述

这篇关于华为OD机试 - 分解连续正整数组合 - 数学推导(Java 2024 E卷 100分)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1117640

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

Spring Security--Architecture Overview

1 核心组件 这一节主要介绍一些在Spring Security中常见且核心的Java类,它们之间的依赖,构建起了整个框架。想要理解整个架构,最起码得对这些类眼熟。 1.1 SecurityContextHolder SecurityContextHolder用于存储安全上下文(security context)的信息。当前操作的用户是谁,该用户是否已经被认证,他拥有哪些角色权限…这些都被保

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题是由安全生产模拟考试一点通提供,流动式起重机司机证模拟考试题库是根据流动式起重机司机最新版教材,流动式起重机司机大纲整理而成(含2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题参考答案和部分工种参考解析),掌握本资料和学校方法,考试容易。流动式起重机司机考试技

hdu4869(逆元+求组合数)

//输入n,m,n表示翻牌的次数,m表示牌的数目,求经过n次操作后共有几种状态#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#includ