华为OD机试 - 分解连续正整数组合 - 数学推导(Java 2024 E卷 100分)

2024-08-29 10:44

本文主要是介绍华为OD机试 - 分解连续正整数组合 - 数学推导(Java 2024 E卷 100分),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

华为OD机试 2024E卷题库疯狂收录中,刷题点这里

专栏导读

本专栏收录于《华为OD机试(JAVA)真题(E卷+D卷+A卷+B卷+C卷)》。

刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新,全天CSDN在线答疑。

一、题目描述

给定一个正整数 n,如果能够分解为 m (m > 1) 个连续正整数之和,请输出所有分解中,m 最小的分解。

如果给定整数无法分解为连续正整数x,则输出字符串 “N”。

二、输入描述

输入数据为一整数 n,范围为 (1, 2^30]

三、输出描述

比如输入21,则输出21=10+11

四、测试用例

测试用例1:

1、输入

21

2、输出

21=10+11

3、说明

21可以分解的连续正整数组合的形式有多种:

21 = 1 + 2 + 3 + 4 + 5 + 6

21 = 6 + 7 + 8

21 = 10 + 11

其中 21 = 10 + 11,是最短的分解序列。

测试用例2:

1、输入

24

2、输出

24 = 7 + 8 + 9

3、说明

五、解题思路

数学推导

假设 n 可以表示为 m 个连续正整数之和,设这些整数从 x 开始,形式为 x, x+1, x+2, …, x+(m-1)。

那么 n 的表达式为:n=x+(x+1)+(x+2)+...+(x+m−1)

这个和可以被化简为:

n = m × x + m × ( m − 1 ) 2 n = m \times x + \frac{m \times (m - 1)}{2} n=m×x+2m×(m1)

​进一步变换可以得到:

m × x = n − m × ( m − 1 ) 2 m \times x = n - \frac{m \times (m - 1)}{2} m×x=n2m×(m1)

要使 x 为正整数,n - \frac{m \times (m - 1)}{2} 必须是 m 的倍数,且 x 也必须是正数。

遍历寻找最小的 m

从 m = 2 开始遍历,依次计算 x,判断 x 是否为正整数且大于零。

如果找到这样的 x,输出该分解形式,并结束程序。

如果在所有可能的 m 中都没有找到合适的 x,则输出 “N”。

六、Java算法源码

public class OdTest01 {public static void main(String[] args) {Scanner scanner = new Scanner(System.in);long n = scanner.nextLong();scanner.close();// 从m = 2开始遍历,尝试找到最小的分解for (long m = 2; m * (m - 1) / 2 < n; m++) {// 计算xlong remainder = n - (m * (m - 1)) / 2;if (remainder % m == 0) {long x = remainder / m;if (x > 0) {printResult(n, x, m);return;}}}// 如果没有找到符合条件的m和x,输出NSystem.out.println("N");}// 打印结果 n = x + (x+1) + ... + (x+m-1)private static void printResult(long n, long x, long m) {StringBuilder result = new StringBuilder();result.append(n).append(" = ");for (long i = 0; i < m; i++) {if (i > 0) {result.append(" + ");}result.append(x + i);}System.out.println(result.toString());}
}

七、效果展示

1、输入

18

2、输出

18 = 5 + 6 + 7

3、说明

数学推导

假设 18 可以分解为 m 个连续正整数的和,设这些整数从 x 开始,形式为 x, x+1, x+2, …, x+(m-1)。

根据公式:

n = m × x + m × ( m − 1 ) 2 n = m \times x + \frac{m \times (m - 1)}{2} n=m×x+2m×(m1)

化简为:

m × x = n − m × ( m − 1 ) 2 m \times x = n - \frac{m \times (m - 1)}{2} m×x=n2m×(m1)

我们需要找到最小的 m 使得 x 是正整数。

逐步计算 m 的值:

当 m = 2 时:

x = 18 − 2 × ( 2 − 1 ) 2 2 = 18 − 1 2 = 17 2 = 8.5 x = \frac{18 - \frac{2 \times (2 - 1)}{2}}{2} = \frac{18 - 1}{2} = \frac{17}{2} = 8.5 x=21822×(21)=2181=217=8.5

不是整数,不符合

当 m = 3 时:

x = 18 − 3 × ( 3 − 1 ) 2 3 = 18 − 3 3 = 15 3 = 5 x = \frac{18 - \frac{3 \times (3 - 1)}{2}}{3} = \frac{18 - 3}{3} = \frac{15}{3} = 5 x=31823×(31)=3183=315=5

是整数,符合。

因此,m = 3 时,x = 5 是一个符合条件的解。

当 m = 3 且 x = 5 时,连续的三个正整数分别为 5, 6, 7,它们的和为:

5 + 6 + 7 = 18

这说明 18 可以分解为 5, 6, 7 三个连续正整数的和。

在这里插入图片描述


🏆下一篇:华为OD机试 - 简易内存池 - 逻辑分析(Java 2024 D卷 200分)

🏆本文收录于,华为OD机试(JAVA)真题(E卷+D卷+A卷+B卷+C卷)

刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新,全天CSDN在线答疑。

在这里插入图片描述

这篇关于华为OD机试 - 分解连续正整数组合 - 数学推导(Java 2024 E卷 100分)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1117640

相关文章

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

创建Java keystore文件的完整指南及详细步骤

《创建Javakeystore文件的完整指南及详细步骤》本文详解Java中keystore的创建与配置,涵盖私钥管理、自签名与CA证书生成、SSL/TLS应用,强调安全存储及验证机制,确保通信加密和... 目录1. 秘密键(私钥)的理解与管理私钥的定义与重要性私钥的管理策略私钥的生成与存储2. 证书的创建与

浅析Spring如何控制Bean的加载顺序

《浅析Spring如何控制Bean的加载顺序》在大多数情况下,我们不需要手动控制Bean的加载顺序,因为Spring的IoC容器足够智能,但在某些特殊场景下,这种隐式的依赖关系可能不存在,下面我们就来... 目录核心原则:依赖驱动加载手动控制 Bean 加载顺序的方法方法 1:使用@DependsOn(最直

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

Javaee多线程之进程和线程之间的区别和联系(最新整理)

《Javaee多线程之进程和线程之间的区别和联系(最新整理)》进程是资源分配单位,线程是调度执行单位,共享资源更高效,创建线程五种方式:继承Thread、Runnable接口、匿名类、lambda,r... 目录进程和线程进程线程进程和线程的区别创建线程的五种写法继承Thread,重写run实现Runnab

Java 方法重载Overload常见误区及注意事项

《Java方法重载Overload常见误区及注意事项》Java方法重载允许同一类中同名方法通过参数类型、数量、顺序差异实现功能扩展,提升代码灵活性,核心条件为参数列表不同,不涉及返回类型、访问修饰符... 目录Java 方法重载(Overload)详解一、方法重载的核心条件二、构成方法重载的具体情况三、不构

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys