最大流模板【EdmondsKarp算法,简称EK算法,O(m^2n)】

2024-08-29 05:32

本文主要是介绍最大流模板【EdmondsKarp算法,简称EK算法,O(m^2n)】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转自http://blog.sina.com.cn/s/blog_6cf509db0100uy5n.html,好东西大家一起分享

因为是初学教程,所以我会尽量避免繁杂的数学公式和证明。也尽量给出了较为完整的代码。
本文的目标群体是网络流的初学者,尤其是看了各种NB的教程也没看懂怎么求最大流的小盆友们。本文的目的是,解释基本的网络流模型,最基础的最大流求法,即bfs找增广路法,也就是EK法,全名是Edmond-Karp,其实我倒是觉得记一下算法的全名和来历可以不时的拿出来装一装。
    比如说这个,EK算法首先由俄罗斯科学家Dinic在1970年提出,没错,就是dinic算法的创始人,实际上他提出的也正是dinic算法,在EK的基础上加入了层次优化,这个我们以后再说,1972年Jack Edmonds和Richard Karp发表了没有层次优化的EK算法。但实际上他们是比1790年更早的时候就独立弄出来了。
    你看,研究一下历史也是很有趣的。
    扯远了,首先来看一下基本的网络流最大流模型。
    有n个点,有m条有向边,有一个点很特殊,只出不进,叫做源点,通常规定为1号点。另一个点也很特殊,只进不出,叫做汇点,通常规定为n号点。每条有向边上有两个量,容量和流量,从i到j的容量通常用c[I,j]表示,流量则通常是f[I,j]。通常可以把这些边想象成道路,流量就是这条道路的车流量,容量就是道路可承受的最大的车流量。很显然的,流量<=容量。而对于每个不是源点和汇点的点来说,可以类比的想象成没有存储功能的货物的中转站,所有”进入”他们的流量和等于所有从他本身”出去”的流量。
    把源点比作工厂的话,问题就是求从工厂最大可以发出多少货物,是不至于超过道路的容量限制,也就是,最大流。
    比如这个图。每条边旁边的数字表示它的容量。


下面我们来考虑如何求最大流。
    首先,假如所有边上的流量都没有超过容量(不大于容量),那么就把这一组流量,或者说,这个流,称为一个可行流。一个最简单的例子就是,零流,即所有的流量都是0的流。
我们就从这个零流开始考虑,假如有这么一条路,这条路从源点开始一直一段一段的连到了汇点,并且,这条路上的每一段都满足流量<容量,注意,是严格的<,而不是<=。那么,我们一定能找到这条路上的每一段的(容量-流量)的值当中的最小值delta。我们把这条路上每一段的流量都加上这个delta,一定可以保证这个流依然是可行流,这是显然的。
    这样我们就得到了一个更大的流,他的流量是之前的流量+delta,而这条路就叫做增广路。
    我们不断地从起点开始寻找增广路,每次都对其进行增广,直到源点和汇点不连通,也就是找不到增广路为止。当找不到增广路的时候,当前的流量就是最大流,这个结论非常重要。
寻找增广路的时候我们可以简单的从源点开始做bfs,并不断修改这条路上的delta量,直到找到源点或者找不到增广路。
这里要先补充一点,在程序实现的时候,我们通常只是用一个c数组来记录容量,而不记录流量,当流量+1的时候,我们可以通过容量-1来实现,以方便程序的实现。

Bfs过程的半伪代码:下面另给一个C++版的模板

</pre><pre name="code" class="cpp">int BFS()
{int i,j,k,v,u;memset(pre,-1,sizeof(pre));for(i=1;i<=n;++i)flow[i]=max_int;queue<int>que;pre[start]=0;que.push(start);while(!que.empty()){v=que.front();que.pop();for(i=1;i<=n;++i){u=i;if(u==start||pre[u]!=-1||map[v][u]==0)continue;pre[u]=v;flow[u]=MIN(flow[v],map[v][u]);que.push(u);}}if(flow[end]==max_int)return -1;return flow[end];
}

但事实上并没有这么简单,上面所说的增广路还不完整,比如说下面这个网络流模型


我们第一次找到了1-2-3-4这条增广路,这条路上的delta值显然是1。于是我们修改后得到了下面这个流。(图中的数字是容量)


这时候(1,2)和(3,4)边上的流量都等于容量了,我们再也找不到其他的增广路了,当前的流量是1。
但这个答案明显不是最大流,因为我们可以同时走1-2-4和1-3-4,这样可以得到流量为2的流。
那么我们刚刚的算法问题在哪里呢?问题就在于我们没有给程序一个”后悔”的机会,应该有一个不走(2-3-4)而改走(2-4)的机制。那么如何解决这个问题呢?回溯搜索吗?那么我们的效率就上升到指数级了。
而这个算法神奇的利用了一个叫做反向边的概念来解决这个问题。即每条边(I,j)都有一条反向边(j,i),反向边也同样有它的容量。
我们直接来看它是如何解决的:
 
在第一次找到增广路之后,在把路上每一段的容量减少delta的同时,也把每一段上的反方向的容量增加delta。即在Dec(c[x,y],delta)的同时,inc(c[y,x],delta)
我们来看刚才的例子,在找到1-2-3-4这条增广路之后,把容量修改成如下

最大流模板【EdmondsKarp算法,简称EK算法,O(m^2n)】

这时再找增广路的时候,就会找到1-3-2-4这条可增广量,即delta值为1的可增广路。将这条路增广之后,得到了最大流2。

最大流模板【EdmondsKarp算法,简称EK算法,O(m^2n)】

那么,这么做为什么会是对的呢?我来通俗的解释一下吧。
事实上,当我们第二次的增广路走3-2这条反向边的时候,就相当于把2-3这条正向边已经是用了的流量给”退”了回去,不走2-3这条路,而改走从2点出发的其他的路也就是2-4。(有人问如果这里没有2-4怎么办,这时假如没有2-4这条路的话,最终这条增广路也不会存在,因为他根本不能走到汇点)同时本来在3-4上的流量由1-3-4这条路来”接管”。而最终2-3这条路正向流量1,反向流量1,等于没有流量。
这就是这个算法的精华部分,利用反向边,使程序有了一个后悔和改正的机会。而这个算法和我刚才给出的代码相比只多了一句话而已。

#include<iostream>
#include<queue>
using namespace std;
const int maxn=205;
const int inf=0x7fffffff;
int r[maxn][maxn]; //残留网络,初始化为原图
bool visit[maxn];
int pre[maxn];
int m,n;
bool bfs(int s,int t)  //寻找一条从s到t的增广路,若找到返回true
{int p;queue<int > q;memset(pre,-1,sizeof(pre));memset(visit,false,sizeof(visit));pre[s]=s;visit[s]=true;q.push(s);while(!q.empty()){p=q.front();q.pop();for(int i=1;i<=n;i++){if(r[p][i]>0&&!visit[i]){pre[i]=p;visit[i]=true;if(i==t) return true;q.push(i);}}}return false;
}
int EdmondsKarp(int s,int t)
{int flow=0,d,i;while(bfs(s,t)){d=inf;for(i=t;i!=s;i=pre[i])d=d<r[pre[i]][i]? d:r[pre[i]][i];for(i=t;i!=s;i=pre[i]){r[pre[i]][i]-=d;r[i][pre[i]]+=d;}flow+=d;}return flow;
}int main()
{while(scanf("%d%d",&m,&n)!=EOF){int u,v,w;memset(r,0,sizeof(r));///for(int i=0;i<m;i++){scanf("%d%d%d",&u,&v,&w);r[u][v]+=w;}printf("%d\n",EdmondsKarp(1,n));}return 0;
}



这篇关于最大流模板【EdmondsKarp算法,简称EK算法,O(m^2n)】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1116979

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

poj3468(线段树成段更新模板题)

题意:包括两个操作:1、将[a.b]上的数字加上v;2、查询区间[a,b]上的和 下面的介绍是下解题思路: 首先介绍  lazy-tag思想:用一个变量记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。 比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费