详解统计信号处理之克拉美罗界

2024-08-29 02:08

本文主要是介绍详解统计信号处理之克拉美罗界,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

各种研究领域(包括无线定位方向)都会碰到参数估计的问题,这时常常会看到克拉美罗界 (Cramér–Rao bound) 这个东西。很多随机信号的书都会介绍什么是克拉美罗界,但初学者学起来往往很吃力,本文从直观上简单讨论一下克拉美罗界的各个方面。

什么是参数估计问题

  假设一种最简单的情况:

    一个物理量为技术分享,我们使用某种方式去观测它,观测值为技术分享,由于存在噪声,此时技术分享技术分享为高斯噪声,技术分享

这种情况下,我们自然会直接使用观测值技术分享去估计技术分享,这时就会存在估计的误差,直观地理解,噪声的方差技术分享越大,估计就可能越不准确。

为什么要讨论克拉美罗界

  讨论克拉美罗界就是为了使用这个标准来衡量无偏估计量的性能。

  采用上面的方式,使用技术分享去估计技术分享,这个估计值会在真实值附近波动(看作随机变量)。我们需要使用一些标准来衡量这种估计的好坏,一个标准是估计值的平均,这里的这个估计量是无偏估计量。另一标准是这个估计值波动的剧烈程度,也就是方差。上面这个问题中,克拉美罗界就等于这个方差。

  可是为什么不直接讨论方差而要去计算克拉美罗界呢,因为方差是针对某一种特定的估计量(或者理解为估计方式)而言的,在上面的例子中,方差是估计量技术分享的方差(技术分享)。对于稍微复杂一点点的问题,对技术分享的可以有各种不同的估计量,它们分别的方差是不同的。显然,对于无偏估计量而言,方差越小的估计方式性能越好,但是这个方差有一个下界,就是我们的克拉美罗界。

直观地理解克拉美罗界

  克拉美罗界本身不关心具体的估计方式,只是去反映:利用已有信息所能估计参数的最好效果。

  还是上面那个参数估计问题,当我们观察到技术分享的时候,我们可以知道真实值技术分享的概率密度分布是以技术分享为均值,技术分享为方差的正态分布,即:

技术分享

                  技术分享技术分享

上图给出了两个似然函数的例子,直观地看,似然函数的“尖锐”性决定了我们估计位置参数技术分享的精度。这个“尖锐”性可以用对数似然函数峰值处的负的二阶导数来度量,即对数似然函数的曲率(对数似然函数就是在似然函数的基础山加一个自然对数,这样有利于计算)。计算过程我就不写了,有兴趣的可以自己算算,算完之后结果为:技术分享,是噪声的方差的倒数,也就是噪声越小,对数似然函数越尖锐。

  所以,可以这样理解,似然函数的“尖锐”程度,或者,符合似然函数分布的这组数据的方差,就是克拉美罗界。

不同的估计量(估计方式)是什么意思

  让我们来分析一个稍微复杂一点点的参数估计问题:

    一个物理量为技术分享,我们使用某种方式去观测它,观测值为技术分享技术分享,这是两个不同时刻的观测结果,一样的高斯噪声技术分享

  这种情况下,我们要估计技术分享,正常人可能会采用估计量技术分享,即前后两个观测的平均,也有人可能觉得这样计算量有点大,于是总是直接使用技术分享去估计技术分享,也有人觉得第二个观测值可能会受到系统影响而不准确,他更相信前面的观察值,于是总采取这样的估计量技术分享。这三个估计量都是无偏的:

  估计量技术分享的方差为:技术分享

  估计量技术分享的方差为:技术分享

  估计量技术分享的方差为:技术分享

  比较上面的三种估计量,第一种的方差最小,它的估计效果较好。实际上,如果第二个观测值真的不太准确,也就是后一个高斯噪声较大,这样的话也许第二个估计量就比较合适了。

  因此,不同的考虑方式可以产生各种不同的估计算法,这些不同的估计量都是在真实值附近波动的随机变量(有的有偏,有的无偏),它们分别的方差也是不一样的,但是数学家们证明了:任何无偏估计量的方差必定大于等于克拉美罗界。

 克拉美罗界的基本计算

  我们假设这两次观察互相独立,仅受相同的高斯白噪声影响,那么根据已有的信息,真实值技术分享的似然函数为两个正态的概率密度分布相乘:(注意:pdf实际上应该再进行归一化处理,但是我们之后使用对数似然函数,乘不乘归一化系数都无所谓,对数之后变成了常数,求导的时候就没了)

技术分享

与之前一样,可以计算出对数似然函数的二阶导数,得到结果为:技术分享。实际上,当观测数目为技术分享的时候,这个值将会是技术分享。也就是说,使用多个观测值的信息时,对数似然函数越“尖锐”。这个二阶导数(曲率)更一般的度量是(下面用技术分享来表示要估计的参数技术分享):

技术分享

它度量了对数似然函数的平均曲率(很多情况下曲率与技术分享的值有关,取数学期望使得它仅为技术分享的函数),被称为数据技术分享的Fisher信息技术分享,直观地理解,信息越多,下限越低,它具有信息测度的基本性质(非负的、独立观测的可加性)。一般来说,Fisher信息的倒数就是克拉美罗界了,任何无偏估计量技术分享的方差满足:

技术分享

大多情况下,这个不等式的右边(克拉美罗界)是技术分享的函数。

克拉美罗界的标准定义

   (定理:Cramer-Rao下限----标量参数)

  假定PDF 技术分享满足“正则”条件(对于所有的技术分享):

技术分享

其中数学期望是对技术分享 求取的。那么,任何无偏估计量技术分享的方差必定满足:

技术分享

其中导数是在技术分享的真值处计算的,数学期望是对技术分享求取的。而且,对于某个函数技术分享技术分享,当且仅当

技术分享

时,对所有技术分享达到下限的无偏估计量就可以求得。这个估计量是技术分享,它是MVU估计量(最小方差无偏估计),最小方差是技术分享

总结

  估计一个参数,根据已有信息得到了似然函数(或者pdf),这个pdf的“尖锐”性,或者,符合似然函数分布的这组数据的方差,就是克拉美罗界,它可以通过对对数似然函数求二阶导再取倒数得到。克拉美罗界的计算不依赖具体的估计方式,它可以用来作为一个衡量估计方式好坏的标准,及估计量的方差越靠近克拉美罗界,效果越好。

 https://en.wikipedia.org/wiki/Cramér–Rao_bound

(注:本文主要参考《统计信号处理基础-估计与检测理论》-国外电子与通信教材系列)

 

在参数估计和统计中,Cramer-Rao界限(Cramer-Rao bound, CRB)或者Cramer-Rao下界(CRLB),表示一个确定性参数的估计的方差下界。命名是为了纪念Harald Cramer和Calyampudi Radhakrishna Rao。这个界限也称为Cramer-Rao不等式或者信息不等式。

它的最简单形式是:任何无偏估计的方差至少大于Fisher信息的倒数。一个达到了下界的无偏估计被称为完全高效的(fully efficient)。这样的估计达到了所有无偏估计中的最小均方误差(MSE,mean square error),因此是最小方差无偏(MVU,minimum variance unbiased)估计。

给定偏倚,Cramer-Rao界限还可以用于确定有偏估计的界限。在一些情况下,有偏估计方法的结果可能方差和均方差都小于无偏估计的Cramer-Rao下界。

标量情形

标量的无偏情形

假设是一个位置确定性参数。我们需要从观察变量估计它。而它们满足一个概率密度函数。任何的无偏估计的方差的下界为Fisher信息的倒数: 


其中Fisher信息定义为 

其中 表示求期望。

无偏估计的效率描述估计的方差有多接近下限,定义为 


显然有 

标量的一般情形

更一般的情况是考虑参数的无偏估计。这里的无偏性理解为。这种情况下,方差的下界为 


其中 表示 关于 的导数, 仍然是Fisher信息。

有偏估计的界限

考虑估计,设其偏倚,令。利用上式,任何期望为的无偏估计的方差都大于等于。于是 


,上式退化为无偏估计得方差界限。当估计 退化为常数(概率密度函数为脉冲函数),则方差退化为0。

从上式,利用标准分解可以推出有偏估计的均方误差下界为 


注意,如果 ,那么上式右端的下界可能小于Cramer-Rao下界。例如,当

多元变量的情形

定义向量,它的概率密度函数为满足后面的两个正则化条件。Fisher信息矩阵是一个的矩阵,元素定义为 

为一个向量函数的估计,,记它的期望向量。Cramer-Rao下界认为T(X)的协方差矩阵满足 


其中

  • 矩阵大于等于符号表示是一个半正定矩阵;
  • 是雅克比矩阵,它的第个元素为

的无偏估计(例如),则Cramer-Rao法则退化为 

两个正则化条件

边界依赖两个关于的弱正则化条件:

  • Fisher信息矩阵总是存在。等价地说,对于所有,如果,则存在并且有限。
  • 的积分和对的微分可以交换顺序。也就是说,在下式右侧有限时,有 

上述条件通常可以通过以下任意一个条件来确认:

  1. 函数中有边界支持,并且边界不依赖于
  2. 函数有有限的支持,连续可微,并且对于所有积分收敛。

标量情形的证明

假设是一个的无偏估计,且。目标是证明,对于所有, 

为随机变量,且概率密度函数为为统计量,且作为的估计。定义为概率密度函数关于的偏导数 


可以发现, 的概率密度函数也是 。利用第二个正则化条件,可以得到 的期望为0。即 

因为 ,由协方差定义式可以推出 。展开可以得到 

由柯西-施瓦茨不等式可得 

因此 

参考文献

https://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93Rao_bound#Regularity_conditions

 

作者: rubbninja
出处: http://www.cnblogs.com/rubbninja/
版权声明:本文版权归作者和博客园共有,转载请注明出处。

这篇关于详解统计信号处理之克拉美罗界的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1116540

相关文章

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

java中反射(Reflection)机制举例详解

《java中反射(Reflection)机制举例详解》Java中的反射机制是指Java程序在运行期间可以获取到一个对象的全部信息,:本文主要介绍java中反射(Reflection)机制的相关资料... 目录一、什么是反射?二、反射的用途三、获取Class对象四、Class类型的对象使用场景1五、Class

golang 日志log与logrus示例详解

《golang日志log与logrus示例详解》log是Go语言标准库中一个简单的日志库,本文给大家介绍golang日志log与logrus示例详解,感兴趣的朋友一起看看吧... 目录一、Go 标准库 log 详解1. 功能特点2. 常用函数3. 示例代码4. 优势和局限二、第三方库 logrus 详解1.