基于 Redis 的 HyperLogLog 实现了 UV 的统计

2024-08-29 01:04

本文主要是介绍基于 Redis 的 HyperLogLog 实现了 UV 的统计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 前言
    • HyperLogLog 简介
    • HyperLogLog 的工作原理
    • 例子
    • 总结

前言

在现代网站开发中,用户行为分析是一个非常重要的环节。其中,UV(Unique Visitor,独立访客)PV(Page View,页面浏览量)是衡量网站流量用户活跃度的关键指标。UV 指的是通过互联网访问网站的自然人数量,通常一个用户在一定时间内的多次访问只计作一次;而 PV 则指的是用户访问网站的页面次数,无论是否来自同一用户,每次访问都会计入。

HyperLogLog 简介

HyperLogLog 是一种用于基数估计的概率性数据结构,可以高效地估算集合中唯一元素的数量(基数)。与传统的基数统计方法(如使用哈希集合)相比,HyperLogLog 能在使用极少内存的情况下提供相对高精度的基数估计。它特别适合在大数据和高并发的场景中使用,如网站的 UV(独立访客数)统计。

HyperLogLog 是一种高效的算法,用来估计集合中有多少个不同的元素

局限:

  • 误差:存在约 0.81% 的误差率,对于需要精确统计的场景不适用。
  • 不可取出原始数据:一旦元素被插入 HyperLogLog,就无法检索具体的元素,只能提供基数的估计。

HyperLogLog 的工作原理

哈希映射:HyperLogLog 使用哈希函数将每个输入元素转换成一个长整数(就像把名字转换成一个很长的号码),形成一串伪随机的二进制字符串。这样做的目的是为了确保所有元素被随机分布,而不是集中在某些地方。哈希函数的均匀性保证了每个元素有相同的概率被分配到任何一个位置。

前导零计数:对于每个哈希后的号码,HyperLogLog 会查看它的二进制表示(用 0 和 1 组成的串),并数出从左边开始有多少个连续的 0。前导零越多,说明这个元素在一个大范围内是很独特的。简单来说,前导零的数量间接反映了集合中有多少不同的元素。

分桶和调和平均:为了更准确地估计不同元素的数量,HyperLogLog 把这些哈希值分配到多个桶(想象成多个小盒子)。每个桶会记录它见到的哈希值中最多前导零的数量。然后,HyperLogLog 会用一种叫做“调和平均”的数学方法来综合所有桶的信息,从而估算出不同元素的总数。

误差控制:虽然 HyperLogLog 使用的是一种概率算法(不是完全精确),但它的误差率非常小,大约只有 0.81%。在大多数实际应用中,比如统计网站的独立访客数量(UV),这个误差是可以接受的。同时,相比于传统方法,HyperLogLog 只需要很少的内存,就可以处理非常多的数据。

例子

注解

@TrackPageView 注解可以加在控制器(Controller)的方法上,用于指定需要统计 PV 和 UV 的页面或模块。通过在 Controller 方法上使用这个注解,AOP 切面可以拦截请求,自动进行页面访问的统计。

@Target({ ElementType.PARAMETER, ElementType.METHOD })
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface TrackPageView {String pageName() default ""; // 用于指定页面或模块的名称
}

切面类

@Component
@Aspect
public class SysAspect {@Autowiredprivate StatisticsService statisticsService;@Pointcut("@annotation(com.example.hac.annotation.TrackPageView)")private void pointcut() {}@Around("pointcut()")public Object around(ProceedingJoinPoint joinPoint) throws Throwable {// 继续执行原始方法Object result = joinPoint.proceed();// 获取切入点方法的签名MethodSignature signature = (MethodSignature) joinPoint.getSignature();Method method = signature.getMethod();// 从方法中获取 TrackPageView 注解TrackPageView trackPageView = method.getAnnotation(TrackPageView.class);if (trackPageView != null) {String userId = UserContext.getUser();String pageName = trackPageView.pageName(); // 获取注解中的页面名称// 记录 PV 和 UVstatisticsService.recordPageView(userId, pageName);}return result;}
}

redis统计

@Ser**加粗样式**vice
public class StatisticsService {@Autowiredprivate StringRedisTemplate redisTemplate;private static final String UV_KEY_PREFIX = "uv:";private static final String PV_KEY_PREFIX = "pv:";public void recordPageView(String userId, String pageName) {String pvKey = PV_KEY_PREFIX + pageName;String uvKey = UV_KEY_PREFIX + pageName;// 记录 PVredisTemplate.opsForValue().increment(pvKey, 1);// 记录 UV(使用 HyperLogLog 统计唯一用户)redisTemplate.opsForHyperLogLog().add(uvKey, userId);}public long getPageViews(String pageName) {String pvKey = PV_KEY_PREFIX + pageName;String pvCount = redisTemplate.opsForValue().get(pvKey);return pvCount != null ? Long.parseLong(pvCount) : 0;}public long getUniqueVisitors(String pageName) {String uvKey = UV_KEY_PREFIX + pageName;return redisTemplate.opsForHyperLogLog().size(uvKey);}
}

ps: 可以通过修改 Redis 的 key 来按时间单位(例如每天)统计数据。每天的数据可以定时同步到数据库中,以便持久化和后续分析。当需要查看历史统计数据时,可以直接从数据库中查询。

使用:

@RestController
@RequestMapping(value = "/api")
public class TestController {@Autowiredpublic TestService service;@TrackPageView(pageName = "home")@GetMapping(value = "/test")public int test() {return service.test();}
}

结果:
在这里插入图片描述

我登录访问了两次,所以pv为2,同一个用户,所以uv为1
在这里插入图片描述

总结

为了有效地统计网站的访问情况,我们可以使用 Redis 提供的 HyperLogLog 数据结构来统计 UV(独立访客数),并使用 Redis 的 String 类型来统计 PV(页面访问次数)。


这篇关于基于 Redis 的 HyperLogLog 实现了 UV 的统计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1116402

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、