模拟退火算法解多元函数

2024-08-28 22:32

本文主要是介绍模拟退火算法解多元函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

模拟退火算法解多元函数

题目:
F ( x ) = 11.16386 − 0.0903 x 1 − 0.1487 x 2 − 0.0664 x 3 + 0.09074 x 4 − 2.452 ∗ 1 0 − 4 x 1 x 2 + 6.228 ∗ 1 0 − 5 x 1 x 3 + 2.457 ∗ 1 0 − 3 x 1 x 4 + 3.8688 ∗ 1 0 − 3 x 2 x 3 − 6.471 ∗ 1 0 − 3 x 2 x 4 − 1.451 ∗ 1 0 − 3 x 3 x 4 F(x)=11.16386-0.0903x_1-0.1487x_2-0.0664x_3+0.09074x_4-2.452*10^{-4}x_1x_2+6.228*10^{-5}x_1x_3+2.457*10^{-3}x_1x_4+3.8688*10^{-3}x_2x_3-6.471*10^{-3}x_2x_4-1.451*10^{-3}x_3x_4 F(x)=11.163860.0903x10.1487x20.0664x3+0.09074x42.452104x1x2+6.228105x1x3+2.457103x1x4+3.8688103x2x36.471103x2x41.451103x3x4

约束条件:

36.163 < x 1 < 65.0934 36.163<x_1<65.0934 36.163<x1<65.0934

0.45 < 1 − 3 x 2 2 x 1 < 0.5 0.45<1-\frac{3x_2}{2x_1}<0.5 0.45<12x13x2<0.5

12.0543 < x 2 < 21.699 12.0543<x_2<21.699 12.0543<x2<21.699

27.75 < x 3 < 36.075 27.75<x_3<36.075 27.75<x3<36.075

10 < x 4 − 2 x 3 10<x_4-2x_3 10<x42x3

x 4 − 3.2 x 3 < 16 x_4-3.2x_3<16 x43.2x3<16

48.02 < x 4 48.02<x_4 48.02<x4

求多目标函数 F ( x ) F(x) F(x)的最小值?

资源链接

https://download.csdn.net/download/u013095333/12585474

解法1:暴力解法

思路,设置 x 1 , x 2 , x 3 , x 4 x_1,x_2,x_3,x_4 x1,x2,x3,x4的范围和精度,依次计算每一个 F ( x ) F(x) F(x)的值,取最小的 F ( x ) F(x) F(x)对应的 x 1 , x 2 , x 3 , x 4 x_1,x_2,x_3,x_4 x1,x2,x3,x4

#include <bits/stdc++.h>
using namespace std;double f(double x1, double x2, double x3, double x4){double ans = 0;ans = 11.16386 - 0.0903*x1 - 0.1487*x2 - 0.0664*x3 + 0.0907*x4;ans = ans - 2.452*0.0001*x1*x2;ans = ans + 6.228*0.00001*x1*x3;ans = ans + 2.457*0.001*x1*x4;ans = ans + 3.8688*0.001*x2*x3;ans = ans - 6.471*0.001*x2*x4;ans = ans - 1.451*0.001*x3*x4;return ans;
}int main()
{double x1, x2, x3, x4;double step = 1;x1 = 36.16;x2 = 12.05;x3 = 27.75;x4 = 48.02;double ftemp = 10000, x1temp = x1, x2temp = x2, x3temp = x3, x4temp = x4;while(x1 < 65.10){x2 = 12.05;while(x2 < 21.7){x3 = 27.75;while(x3 < 36.10){x4 = 48.02;while(x4 < 1000){double fx = 10000;double a = 1 - 3*x2/1.0/(2*x1);double b = x4 - 2*x3;double c = x4 - 3.2*x3;if(a>0.45&&a<0.5&&b>10&&c<16){fx = f(x1, x2, x3, x4);}if(ftemp > fx){ftemp = fx;x1temp = x1;x2temp = x2;x3temp = x3;x4temp = x4;}x4 = x4 + step;}x3 = x3 + step;cout << ftemp << " " << x1 << " " << x2 << " " << x3 << endl;}x2 = x2 + step;}x1 = x1 + step;}cout << ftemp << endl;cout << x1temp << " " << x2temp << " " << x3temp << " " << x4temp << endl;return 0;
} 

结果:
在这里插入图片描述

解法2:模拟退火

参考:
模拟退火算法
用模拟退火算法求解带约束的二元函数极值问题(Java实现)

#include <bits/stdc++.h>
using namespace std;double f(double x1, double x2, double x3, double x4){double ans = 0;ans = 11.16386 - 0.0903*x1 - 0.1487*x2 - 0.0664*x3 + 0.0907*x4;ans = ans - 2.452*0.0001*x1*x2;ans = ans + 6.228*0.00001*x1*x3;ans = ans + 2.457*0.001*x1*x4;ans = ans + 3.8688*0.001*x2*x3;ans = ans - 6.471*0.001*x2*x4;ans = ans - 1.451*0.001*x3*x4;return ans;
}double getRandom(){                       // 获取-1到1区间的随机数 return (rand()%200 - 100)/100.0;
}double getRangeRandom(double a, double b){  // 获取a到b范围内的随机数 int step = (a-b)*1000;return rand()%step/1000.0+a; 
}int main()
{srand((int)time(0));double T = 100, t = 100;double T_min = 1e-8;double step = 0.99;int k = 10;double x1[k], x2[k], x3[k], x4[k];double x1_min = 36.16;double x1_max = 65.10;double x2_min = 12.05;double x2_max = 21.7;double x3_min = 27.75;double x3_max = 36.10;double x4_min = 48.02;double x4_max = 100;double ftemp = 10000, ftemp_new, x1temp, x2temp, x3temp, x4temp;// 随机化初始值for(int i = 0; i < k; i++){x1[i] = getRangeRandom(x1_min, x1_max);x2[i] = getRangeRandom(x2_min, x2_max);x3[i] = getRangeRandom(x3_min, x3_max);x4[i] = getRangeRandom(x4_min, x4_max);double a = 1 - 3*x2[i]/1.0/(2*x1[i]);double b = x4[i] - 2*x3[i];double c = x4[i] - 3.2*x3[i];if(!(a>0.45&&a<0.5&&b>10&&c<16)){i--;}} // 模拟退火 int time = 0;while(t > T_min){ for(int i = 0; i < k; i++){ftemp = f(x1[i], x2[i], x3[i], x4[i]);// 在领域内产生新的解 double x1_new = x1[i] + getRandom();double x2_new = x2[i] + getRandom();double x3_new = x3[i] + getRandom();double x4_new = x4[i] + getRandom();double a = 1 - 3*x2_new/1.0/(2*x1_new);double b = x4_new - 2*x3_new;double c = x4_new - 3.2*x3_new;if(x1_new>x1_min&&x1_new<x1_max&&\x2_new>x2_min&&x2_new<x2_max&&\x3_new>x3_min&&x3_new<x3_max&&\x4_new>x4_min&&x4_new<x4_max&&\a>0.45&&a<0.5&&b>10&&c<16){ftemp_new = f(x1_new, x2_new, x3_new, x4_new);if(ftemp_new < ftemp){   // 有优化,直接替换x1[i] = x1_new;x2[i] = x2_new;x3[i] = x3_new;x4[i] = x4_new;}else{                   // 无优化,以一定概率接受较差的结果 if((t - T_min) > (rand()%100)){x1[i] = x1_new;x2[i] = x2_new;x3[i] = x3_new;x4[i] = x4_new;}} }}t = t * step;// 输出每一轮迭代得到的最小值ftemp = 10000;for(int i = 0; i < k; i++){ftemp_new = f(x1[i], x2[i], x3[i], x4[i]);if(ftemp_new < ftemp){ftemp = ftemp_new;x1temp = x1[i];x2temp = x2[i];x3temp = x3[i];x4temp = x4[i];}} if(time%100==0){cout << time << endl;cout << ftemp << endl;cout << x1temp << " " << x2temp << " " << x3temp << " " << x4temp << endl << endl; }time++;}// 取k个中最小的ftemp = 10000;for(int i = 0; i < k; i++){ftemp_new = f(x1[i], x2[i], x3[i], x4[i]);if(ftemp_new < ftemp){ftemp = ftemp_new;x1temp = x1[i];x2temp = x2[i];x3temp = x3[i];x4temp = x4[i];}} cout << "ans: " << endl;cout << ftemp << endl;cout << x1temp << " " << x2temp << " " << x3temp << " " << x4temp << endl;return 0;
} 

结果:
在这里插入图片描述
与暴力解法得到的基本一致,说明该附近确为最小值对应的解

特点:速度比暴力算法快太多了,确实有用。

迭代过程图:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

绘图代码:

import os
import numpy as np
import matplotlib.pyplot as plti = 0
time = []
fx = []
x1 = []
x2 = []
x3 = []
x4 = []
with open('out.txt', 'r') as file:context = file.read()context = context.split()for i in range(len(context)):if(i%6==0):time.append(int(context[i]))if(i%6==1):fx.append(float(context[i]))if(i%6==2):x1.append(float(context[i]))if(i%6==3):x2.append(float(context[i]))if(i%6==4):x3.append(float(context[i]))if(i%6==5):x4.append(float(context[i]))i = i + 1# 数据清洗干净,下面绘图
plt.rcParams['font.sans-serif']=['SimHei'] #显示中文标签
plt.rcParams['axes.unicode_minus']=Falseplt.plot(time, fx, marker = 'o', c = 'r', label = 'a=0.3')
plt.xlabel('迭代次数', fontsize = 18)
plt.ylabel('目标函数F(x)', fontsize = 18)
plt.xticks(fontsize = 15)
plt.yticks(fontsize = 15)
plt.savefig("fx.svg",bbox_inches='tight')

这篇关于模拟退火算法解多元函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1116069

相关文章

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

Java function函数式接口的使用方法与实例

《Javafunction函数式接口的使用方法与实例》:本文主要介绍Javafunction函数式接口的使用方法与实例,函数式接口如一支未完成的诗篇,用Lambda表达式作韵脚,将代码的机械美感... 目录引言-当代码遇见诗性一、函数式接口的生物学解构1.1 函数式接口的基因密码1.2 六大核心接口的形态学

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个