模拟退火算法解多元函数

2024-08-28 22:32

本文主要是介绍模拟退火算法解多元函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

模拟退火算法解多元函数

题目:
F ( x ) = 11.16386 − 0.0903 x 1 − 0.1487 x 2 − 0.0664 x 3 + 0.09074 x 4 − 2.452 ∗ 1 0 − 4 x 1 x 2 + 6.228 ∗ 1 0 − 5 x 1 x 3 + 2.457 ∗ 1 0 − 3 x 1 x 4 + 3.8688 ∗ 1 0 − 3 x 2 x 3 − 6.471 ∗ 1 0 − 3 x 2 x 4 − 1.451 ∗ 1 0 − 3 x 3 x 4 F(x)=11.16386-0.0903x_1-0.1487x_2-0.0664x_3+0.09074x_4-2.452*10^{-4}x_1x_2+6.228*10^{-5}x_1x_3+2.457*10^{-3}x_1x_4+3.8688*10^{-3}x_2x_3-6.471*10^{-3}x_2x_4-1.451*10^{-3}x_3x_4 F(x)=11.163860.0903x10.1487x20.0664x3+0.09074x42.452104x1x2+6.228105x1x3+2.457103x1x4+3.8688103x2x36.471103x2x41.451103x3x4

约束条件:

36.163 < x 1 < 65.0934 36.163<x_1<65.0934 36.163<x1<65.0934

0.45 < 1 − 3 x 2 2 x 1 < 0.5 0.45<1-\frac{3x_2}{2x_1}<0.5 0.45<12x13x2<0.5

12.0543 < x 2 < 21.699 12.0543<x_2<21.699 12.0543<x2<21.699

27.75 < x 3 < 36.075 27.75<x_3<36.075 27.75<x3<36.075

10 < x 4 − 2 x 3 10<x_4-2x_3 10<x42x3

x 4 − 3.2 x 3 < 16 x_4-3.2x_3<16 x43.2x3<16

48.02 < x 4 48.02<x_4 48.02<x4

求多目标函数 F ( x ) F(x) F(x)的最小值?

资源链接

https://download.csdn.net/download/u013095333/12585474

解法1:暴力解法

思路,设置 x 1 , x 2 , x 3 , x 4 x_1,x_2,x_3,x_4 x1,x2,x3,x4的范围和精度,依次计算每一个 F ( x ) F(x) F(x)的值,取最小的 F ( x ) F(x) F(x)对应的 x 1 , x 2 , x 3 , x 4 x_1,x_2,x_3,x_4 x1,x2,x3,x4

#include <bits/stdc++.h>
using namespace std;double f(double x1, double x2, double x3, double x4){double ans = 0;ans = 11.16386 - 0.0903*x1 - 0.1487*x2 - 0.0664*x3 + 0.0907*x4;ans = ans - 2.452*0.0001*x1*x2;ans = ans + 6.228*0.00001*x1*x3;ans = ans + 2.457*0.001*x1*x4;ans = ans + 3.8688*0.001*x2*x3;ans = ans - 6.471*0.001*x2*x4;ans = ans - 1.451*0.001*x3*x4;return ans;
}int main()
{double x1, x2, x3, x4;double step = 1;x1 = 36.16;x2 = 12.05;x3 = 27.75;x4 = 48.02;double ftemp = 10000, x1temp = x1, x2temp = x2, x3temp = x3, x4temp = x4;while(x1 < 65.10){x2 = 12.05;while(x2 < 21.7){x3 = 27.75;while(x3 < 36.10){x4 = 48.02;while(x4 < 1000){double fx = 10000;double a = 1 - 3*x2/1.0/(2*x1);double b = x4 - 2*x3;double c = x4 - 3.2*x3;if(a>0.45&&a<0.5&&b>10&&c<16){fx = f(x1, x2, x3, x4);}if(ftemp > fx){ftemp = fx;x1temp = x1;x2temp = x2;x3temp = x3;x4temp = x4;}x4 = x4 + step;}x3 = x3 + step;cout << ftemp << " " << x1 << " " << x2 << " " << x3 << endl;}x2 = x2 + step;}x1 = x1 + step;}cout << ftemp << endl;cout << x1temp << " " << x2temp << " " << x3temp << " " << x4temp << endl;return 0;
} 

结果:
在这里插入图片描述

解法2:模拟退火

参考:
模拟退火算法
用模拟退火算法求解带约束的二元函数极值问题(Java实现)

#include <bits/stdc++.h>
using namespace std;double f(double x1, double x2, double x3, double x4){double ans = 0;ans = 11.16386 - 0.0903*x1 - 0.1487*x2 - 0.0664*x3 + 0.0907*x4;ans = ans - 2.452*0.0001*x1*x2;ans = ans + 6.228*0.00001*x1*x3;ans = ans + 2.457*0.001*x1*x4;ans = ans + 3.8688*0.001*x2*x3;ans = ans - 6.471*0.001*x2*x4;ans = ans - 1.451*0.001*x3*x4;return ans;
}double getRandom(){                       // 获取-1到1区间的随机数 return (rand()%200 - 100)/100.0;
}double getRangeRandom(double a, double b){  // 获取a到b范围内的随机数 int step = (a-b)*1000;return rand()%step/1000.0+a; 
}int main()
{srand((int)time(0));double T = 100, t = 100;double T_min = 1e-8;double step = 0.99;int k = 10;double x1[k], x2[k], x3[k], x4[k];double x1_min = 36.16;double x1_max = 65.10;double x2_min = 12.05;double x2_max = 21.7;double x3_min = 27.75;double x3_max = 36.10;double x4_min = 48.02;double x4_max = 100;double ftemp = 10000, ftemp_new, x1temp, x2temp, x3temp, x4temp;// 随机化初始值for(int i = 0; i < k; i++){x1[i] = getRangeRandom(x1_min, x1_max);x2[i] = getRangeRandom(x2_min, x2_max);x3[i] = getRangeRandom(x3_min, x3_max);x4[i] = getRangeRandom(x4_min, x4_max);double a = 1 - 3*x2[i]/1.0/(2*x1[i]);double b = x4[i] - 2*x3[i];double c = x4[i] - 3.2*x3[i];if(!(a>0.45&&a<0.5&&b>10&&c<16)){i--;}} // 模拟退火 int time = 0;while(t > T_min){ for(int i = 0; i < k; i++){ftemp = f(x1[i], x2[i], x3[i], x4[i]);// 在领域内产生新的解 double x1_new = x1[i] + getRandom();double x2_new = x2[i] + getRandom();double x3_new = x3[i] + getRandom();double x4_new = x4[i] + getRandom();double a = 1 - 3*x2_new/1.0/(2*x1_new);double b = x4_new - 2*x3_new;double c = x4_new - 3.2*x3_new;if(x1_new>x1_min&&x1_new<x1_max&&\x2_new>x2_min&&x2_new<x2_max&&\x3_new>x3_min&&x3_new<x3_max&&\x4_new>x4_min&&x4_new<x4_max&&\a>0.45&&a<0.5&&b>10&&c<16){ftemp_new = f(x1_new, x2_new, x3_new, x4_new);if(ftemp_new < ftemp){   // 有优化,直接替换x1[i] = x1_new;x2[i] = x2_new;x3[i] = x3_new;x4[i] = x4_new;}else{                   // 无优化,以一定概率接受较差的结果 if((t - T_min) > (rand()%100)){x1[i] = x1_new;x2[i] = x2_new;x3[i] = x3_new;x4[i] = x4_new;}} }}t = t * step;// 输出每一轮迭代得到的最小值ftemp = 10000;for(int i = 0; i < k; i++){ftemp_new = f(x1[i], x2[i], x3[i], x4[i]);if(ftemp_new < ftemp){ftemp = ftemp_new;x1temp = x1[i];x2temp = x2[i];x3temp = x3[i];x4temp = x4[i];}} if(time%100==0){cout << time << endl;cout << ftemp << endl;cout << x1temp << " " << x2temp << " " << x3temp << " " << x4temp << endl << endl; }time++;}// 取k个中最小的ftemp = 10000;for(int i = 0; i < k; i++){ftemp_new = f(x1[i], x2[i], x3[i], x4[i]);if(ftemp_new < ftemp){ftemp = ftemp_new;x1temp = x1[i];x2temp = x2[i];x3temp = x3[i];x4temp = x4[i];}} cout << "ans: " << endl;cout << ftemp << endl;cout << x1temp << " " << x2temp << " " << x3temp << " " << x4temp << endl;return 0;
} 

结果:
在这里插入图片描述
与暴力解法得到的基本一致,说明该附近确为最小值对应的解

特点:速度比暴力算法快太多了,确实有用。

迭代过程图:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

绘图代码:

import os
import numpy as np
import matplotlib.pyplot as plti = 0
time = []
fx = []
x1 = []
x2 = []
x3 = []
x4 = []
with open('out.txt', 'r') as file:context = file.read()context = context.split()for i in range(len(context)):if(i%6==0):time.append(int(context[i]))if(i%6==1):fx.append(float(context[i]))if(i%6==2):x1.append(float(context[i]))if(i%6==3):x2.append(float(context[i]))if(i%6==4):x3.append(float(context[i]))if(i%6==5):x4.append(float(context[i]))i = i + 1# 数据清洗干净,下面绘图
plt.rcParams['font.sans-serif']=['SimHei'] #显示中文标签
plt.rcParams['axes.unicode_minus']=Falseplt.plot(time, fx, marker = 'o', c = 'r', label = 'a=0.3')
plt.xlabel('迭代次数', fontsize = 18)
plt.ylabel('目标函数F(x)', fontsize = 18)
plt.xticks(fontsize = 15)
plt.yticks(fontsize = 15)
plt.savefig("fx.svg",bbox_inches='tight')

这篇关于模拟退火算法解多元函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1116069

相关文章

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(