代码随想录算法训练营第二十三天| 39. 组合总和 40.组合总和II 131.分割回文串

本文主要是介绍代码随想录算法训练营第二十三天| 39. 组合总和 40.组合总和II 131.分割回文串,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一、LeetCode 39. 组合总和
    • 思路:
    • C++代码
  • 二、LeetCode 40.组合总和II
    • 思路
    • C++代码
  • 三、LeetCode 131.分割回文串
    • 思路
    • C++代码
  • 总结


一、LeetCode 39. 组合总和

题目链接:LeetCode 39. 组合总和

文章讲解:代码随想录
视频讲解:带你学透回溯算法-组合总和(对应「leetcode」力扣题目:39.组合总和)| 回溯法精讲!

思路:

 题目要求从给出的数组里选取几个数,使得总和等于给出的target,并且数组中的数可以无限制重复选取,那么相对于前面做过的216. 组合总和 III来说,只需要在每层循环的时候考虑到上次选过的数字可以重复选取即可,即让循环条件中的初始值int i = pre:

for(int i = pre; i < candidates.size(); i++) //pre为上一层选取的数字的下标

 其余的代码基本不变,要找题目要求编程即可。

C++代码

class Solution {
private:vector<vector<int>> comb;vector<int> set;void backtrack(vector<int> candidates, int target, int sum, int pre){//pre记录前一个数字的下标if(sum > target) return; //剪枝操作if(sum == target){if(comb.size() < 150){comb.push_back(set);}return;}for(int i = pre; i < candidates.size(); i++){ //同一个数字可以重复选取,所以可以从下标pre开始取set.push_back(candidates[i]);sum += candidates[i];backtrack(candidates, target, sum, i);sum -= candidates[i];set.pop_back();}}
public:vector<vector<int>> combinationSum(vector<int>& candidates, int target) {backtrack(candidates, target, 0, 0);return comb;}
};

二、LeetCode 40.组合总和II

题目链接:LeetCode 40.组合总和II

文章讲解:代码随想录
视频讲解:回溯算法中的去重,树层去重树枝去重,你弄清楚了没?| LeetCode:40.组合总和II

思路

 本题的重点在于:每个数字只能选一次,且给出的数组中会出现重复的数字,因此对于解集中的数组需要进行去重操作

 笔者在本题中采用的是在子集生成过程中,对子集树同一层的数进行的去重操作。
在这里插入图片描述
 如图,在子集树的遍历过程中,当数字选取在同一条树支上时,即选取数字都会出现在子集中时,重复数字是可以选取的;而当选取数字在同一树层上时,即在同一个位置上选取数字时,不能重复选取。

 体现在代码中则是当前数字与前一个数字相同,且前一个数字没有被选取时,那么当前的数字就不能选取(因为如果选取,那么后续生成的所有子集都会和选取前一个数生成的子集相同,出现重复),所以我们在递归中加上一个判断条件即可去重。

C++代码

class Solution {
private:vector<vector<int>> comb;vector<int> set;vector<bool> used;int sum;void backtrack(vector<int> candidates, int target, int pre){if(sum == target){comb.push_back(set);return;}for(int i = pre + 1; i < candidates.size() && sum + candidates[i] <= target; i++){if(i > 0 && candidates[i] == candidates[i-1] && !used[i-1]) continue;//遇到同一层相同数字,则跳过此次循环set.push_back(candidates[i]);sum += candidates[i];used[i] = true;backtrack(candidates, target, i);used[i] = false;sum -= candidates[i];set.pop_back();}}
public:vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {sum = 0;sort(candidates.begin(), candidates.end());for(auto x: candidates){used.push_back(false);}backtrack(candidates, target, -1);return comb;}
};

三、LeetCode 131.分割回文串

题目链接:LeetCode 131.分割回文串

文章讲解:代码随想录
视频讲解:带你学透回溯算法-分割回文串(对应力扣题目:131.分割回文串)| 回溯法精讲!

思路

 题目要求将给出的字符串划分为几个回文串的组合,笔者采用回溯算法。对于回文串的判断和处理,笔者采用延伸生成的方法,如图:
在这里插入图片描述
 对于一个已经确定的回文串,如果他的左右两边的字符相等的话,那么加上左右两边的字符会变成一个更长的字符串(这一点适用于奇数长度与偶数长度);因此笔者的算法思想为:在当前未确定的字符串部分找到一个最短的回文串,在这个最短回文串的基础上向两边延伸生成新的回文串;于是对于回溯算法的设计即是在每一层对于最短的回文串进行操作。
在这里插入图片描述
 如图,对于每层回溯的递归逻辑,将当前遍历到的字符作为回文串生成的中心位置字符,在此基础上进行延伸;具体延伸方法为:在原回文串基础上,判断原回文串两侧的字符是否相等,如果相等就可以加入到原串两侧,完成延伸,进入下一层for循环继续延伸;否则跳出for循环。

 回溯递归函数的设计依旧是分为三部曲来编写:

 递归函数的传参以及返回值,笔者设计回溯算法无返回值,设置全局变量储存回文串的分割方案;传参方面,由于笔者在递归函数中处理的是回文串最中间的字符,因此需要一个下标记录当前的字符位置,同时需要另一个下标记录回文串可以到达的最左端的位置(用来控制for循环),因此递归的传参和返回为:

void backtrack(int cur, int pre)

 终止条件设计为,递归函数传入的当前字符的位置大于原串的长度,将当前方案存入全局变量中,递归函数返回。

if (cur >= size) {palindrome.push_back(set);return;
}

 递归函数逻辑如下:

 由于该算法中,奇数长度与偶数长度的回文串生成方式有区别,所以需要分开判断延伸的条件:

//延伸条件判断
if (palindrome[0][cur - i] == palindrome[0][cur + i]) //奇数长度回文串if (palindrome[0][cur - i] == palindrome[0][cur + i + 1]) //偶数长度回文串

 由于奇数长度可以直接将当前的字符作为第一个回文串,偶数长度需要进行一次判断才能确定第一个回文串,因此在循环逻辑和循环条件上也有区别,因此奇数长度和偶数长度笔者分成两个for循环来写。

for (int i = 0; i < size - cur && i <= cur - pre; i++) //奇数长度回文串for (int i = 0; i < size - cur - 1 && i <= cur - pre; i++) //偶数长度回文串

for循环中,当满足两端字符相等的延伸条件时,扩展回文串,并且删除前面一个字符(因为前面一个字符被包含进当前的回文串了),进入下一层递归。

 由于本题和笔者算法的特殊性,在递归返回时不直接进行回溯,而是当回文串两端字符不相等时,即不能再延伸出更长的回文串时,将回文串中包含过的左侧的元素依次返还,便于返回上一层递归继续操作:

int b = odd.size() / 2; //遍历完毕,归还前面的元素
for (int j = 0; j < b; j++) {string tmp(1, odd[j]);set.push_back(tmp);
}

C++代码

class Solution {
private:vector<vector<string>> palindrome;vector<string> set;int size;void backtrack(int cur, int pre) {if (cur >= size) {palindrome.push_back(set);return;}string odd = "";string even = "";for (int i = 0; i < size - cur && i <= cur - pre; i++) {//奇数长度回文串if (odd.empty()) {  //奇数个存在一个的情况,除此以外的情况与偶数个类似odd = palindrome[0][cur];set.push_back(odd);backtrack(cur + 1, pre);set.pop_back();}else {if (palindrome[0][cur - i] == palindrome[0][cur + i]) {odd = palindrome[0][cur - i] + odd + palindrome[0][cur - i];set.pop_back();set.push_back(odd);backtrack(cur + i + 1, cur + i + 1);set.pop_back();}else {break;}}}int b = odd.size() / 2; //遍历完毕,归还前面的元素for (int j = 0; j < b; j++) {string tmp(1, odd[j]);set.push_back(tmp);}for (int i = 0; i < size - cur - 1 && i <= cur - pre; i++) {if (palindrome[0][cur - i] == palindrome[0][cur + i + 1]) { //偶数长度回文串even = palindrome[0][cur - i] + even + palindrome[0][cur - i];if (i > 0) set.pop_back();set.push_back(even);backtrack(cur + i + 2, cur + i + 2);set.pop_back();}else {break;}}b = (even.size() / 2) - 1; //遍历完毕,归还元素for (int j = 0; j < b; j++) {string tmp(1, even[j]);set.push_back(tmp);}}
public:vector<vector<string>> partition(string s) {size = s.size();for (auto x : s) { //构建一个初始集合,便于生成string pal;pal.push_back(x);set.push_back(pal);}palindrome.push_back(set);set.clear();backtrack(0, 0);palindrome.erase(palindrome.begin()); //构建的初始集合和生成的第一个集合重复,因此需要删除一个(可优化)return palindrome;}
};


总结

 回溯法的进阶应用。在编写回溯算法时仍要注意递归的逻辑结构、终止条件和剪枝条件、循环的边界条件,以及递归返回时数值的恢复(回溯),都是回溯算法的重点问题。


文章图片来源:代码随想录 (https://programmercarl.com/)

这篇关于代码随想录算法训练营第二十三天| 39. 组合总和 40.组合总和II 131.分割回文串的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115725

相关文章

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python