机器学习——贝叶斯分类器

2024-08-28 18:20

本文主要是介绍机器学习——贝叶斯分类器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、贝叶斯决策论

  贝叶斯决策论是概率框架下实施决策的基本方法。
  假设有 N N N种可能的类别标记,即 Y = { c 1 , c 2 , . . . , c N } Y=\{c_1,c_2,...,c_N \} Y={c1,c2,...,cN} λ i j \lambda_{ij} λij是将一个真实标记为 c j c_j cj的样本误分类为 c i c_i ci所产生的损失。基于后验概率 P ( c i ∣ x ) P(c_i|\bm x) P(cix)可获得将样本 x \bm x x分类为 c i c_i ci所产生的期望损失,即在样本 x \bm x x上的“条件风险”
R ( c i ∣ x ) = ∑ j = 1 N λ i j P ( c j ∣ x ) R(c_i|\bm x)=\sum_{j=1}^N \lambda_{ij} P(c_j|\bm x) R(cix)=j=1NλijP(cjx)

为最小化总体风险,只需要在每个样本上选择能使条件风险 R ( c ∣ x ) R(c|\bm x) R(cx)最小的类别标记。

  即, h ∗ ( x ) = a r g m i n x ∈ Y R ( c ∣ x ) h^*(\bm x)=argmin_{x \in Y} {R(c|\bm x) } h(x)=argminxYR(cx)

h ∗ h^* h被称为贝叶斯最优分类器,与之对应的总体风险被称为贝叶斯风险

  若要使用贝叶斯判定准则来最小化决策风险,首先要获得后验概率 P ( c ∣ x ) P(c|\bm x) P(cx),但是在现实任务中难以直接获得。所以机器学习所要实现的是基于有限的训练样本集尽可能准确地估计出后验概率 P ( c ∣ x ) P(c|\bm x) P(cx)

  解决上述问题有两种策略:

判别式模型生成式模型
思路直接对 P ( c ∣ x ) P(c |\bm x ) P(cx)建模先对联合概率分布 P ( x , c ) P(\bm x,c) P(x,c)建模,再由此获得 P ( c ∣ x ) P(c |\bm x ) P(cx)
代表算法1、决策树 2、BP神经网络 3、SVM贝叶斯分类器

贝叶斯分类器 ≠ \neq =贝叶斯学习

二、极大似然估计

1、贝叶斯主义认为:分布的参数是分布情况;
2、频率主义包括统计学习;
3、极大似然估计是统计学的一大贡献;
4、极大似然估计需要假设某种概率分布形式。

  估计类条件概率的一种常用策略是先假定其具有某种确定的概率分布形式,再基于训练样本对概率分布的参数进行估计。
  假设 P ( x ∣ c ) P(\bm x |c) P(xc)具有确定的形式并且被参数向量 θ c \bm \theta_c θc唯一确定,则需要利用训练集 D D D估计参数 θ c \bm \theta_c θc.
  令 D c D_c Dc表示训练集 D D D中第 c c c类样本组成的集合,假设这些样本是独立同分布的,则参数 θ c \bm \theta_c θc对于数据集 D c D_c Dc的似然是
P ( D c ∣ θ c ) = ∏ x ∈ D c P ( x ∣ θ c ) P(D_c|\bm \theta_c)=\prod_{\bm x \in D_c} P(\bm x|\bm \theta_c) P(Dcθc)=xDcP(xθc)
  对 θ c \bm \theta_c θc进行极大似然估计,最大化似然 P ( D c ∣ θ c ) P(D_c|\bm \theta_c) P(Dcθc)的参数值 θ ^ c \hat {\bm \theta}_c θ^c.极大似然估计是在 θ c \bm \theta_c θc所有可能取值中,找到一个能使数据出现的“可能性”最大的值。
  但是上式中的连乘操作易造成下溢,通常使用对数似然(log-likelihood)
L L ( θ c ) = log ⁡ P ( D c ∣ θ c ) = ∑ x ∈ D c log ⁡ P ( x ∣ θ c ) LL(\bm \theta_c)=\log P(D_c|\bm \theta_c)=\sum_{\bm x \in D_c} \log P(\bm x| \bm {\theta_c}) LL(θc)=logP(Dcθc)=xDclogP(xθc)
  此时,参数 θ c \bm \theta_c θc的极大似然估计 θ ^ c \hat {\bm \theta}_c θ^c
θ ^ c = arg ⁡ max ⁡ θ c L L ( θ c ) \hat {\bm \theta}_c=\arg \max_{\bm \theta_c} LL(\bm \theta_c) θ^c=argθcmaxLL(θc)

三、朴素贝叶斯分类器

P ( x ∣ c ) P(\bm x| c) P(xc)的主要障碍:所有属性上的联合概率难以从有限训练样本估计获得;计算上组合爆炸;数据上样本稀疏;属性越多,问题越严重。

  朴素贝叶斯分类器采用了“属性条件独立性假设”:对已知类别,假设所有属性相互独立,即假设每个属性独立地对分类结果发生影响。基于属性条件独立性假设:
P ( c ∣ x ) = P ( c ) P ( x ∣ c ) P ( x ) = P ( c ) P ( x ) ∏ i = 1 d P ( x i ∣ c ) P(c|\bm x)=\frac {P(c) P(\bm x|c)} {P(\bm x)}=\frac {P(c)} {P(\bm x)} \prod_{i=1}^d P(x_i|c) P(cx)=P(x)P(c)P(xc)=P(x)P(c)i=1dP(xic)
  其中 d d d为属性数目, x i x_i xi x \bm x x在第 i i i个属性上的取值。
  由于对于所有类别来说 P ( x ) P(\bm x) P(x)相同,因此贝叶斯判定准则有:
h n b ( x ) = arg ⁡ max ⁡ c ∈ Y P ( x ) ∏ i = 1 d P ( x i ∣ c ) h_{nb}(\bm x)=\arg \max_{c \in Y} P(x) \prod_{i=1}^d P(x_i|c) hnb(x)=argcYmaxP(x)i=1dP(xic)
  这即为朴素贝叶斯分类器的表达式。
  朴素贝叶斯分类器的训练过程就是基于训练集 D D D来估计类先验概率 P ( c ) P(c) P(c),并为每个属性估计条件概率 P ( x i ∣ c ) P(x_i|c) P(xic).
  令 D c D_c Dc表示训练集 D D D中第 c c c类样本组成的集合,若有充足的独立同分布样本,则可容易地估计出类先验概率
P ( c ) = ∣ D c ∣ D P(c)=\frac {|D_c|} {D} P(c)=DDc
  离散属性:令 D c , x i D_{c,x_i} Dc,xi表示 D c D_c Dc中在第 i i i个属性上取值为 x i x_i xi的样本组成的集合,则条件概率 P ( x i ∣ c ) P(x_i|c) P(xic)可估计为
P ( x i ∣ c ) = ∣ D c , x i ∣ D c P(x_i|c)=\frac {|D_{c,x_i}|} {D_c} P(xic)=DcDc,xi
连续属性:可考虑概率密度函数

四、拉普拉斯修正

  为了避免其他属性携带的信息被训练集中未出现的属性值“抹去”,在估计概率值时通常要进行“平滑”,常用“拉普拉斯修正”。
  具体来说,令 N N N表示训练集 D D D中可能得类别数, N i N_i Ni表示第 i i i个属性可能的取值数,则
P ^ ( c ) = ∣ D c ∣ + 1 ∣ D ∣ + N \hat P(c)=\frac {|D_c|+1} {|D|+N} P^(c)=D+NDc+1
P ^ ( x i ∣ c ) = ∣ D c , x i ∣ + 1 ∣ D c ∣ + N i \hat P(x_i|c)=\frac {|D_{c,x_i}|+1} {|D_c|+N_i} P^(xic)=Dc+NiDc,xi+1
  拉普拉斯修正避免了因训练集样本不充分而导致概率估值为零的问题,并且在训练集变大时,修正过程所引入的先验的影响也会逐渐变得可忽略,使得估值逐渐趋向于实际概率值。

拉普拉斯修正实质上假设了属性值与类别均匀分布,这是在朴素贝叶斯学习过程中额外引入的关于数据的先验。

这篇关于机器学习——贝叶斯分类器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115534

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个