[Keras] 使用Keras编写自定义网络层(layer)

2024-08-28 13:08

本文主要是介绍[Keras] 使用Keras编写自定义网络层(layer),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Keras提供众多常见的已编写好的层对象,例如常见的卷积层、池化层等,我们可以直接通过以下代码调用:

# 调用一个Conv2D层
from keras import layers
conv2D = keras.layers.convolutional.Conv2D(filters,\
kernel_size, \
strides=(1, 1), \
padding='valid', \
...)

但是在实际应用中,我们经常需要自己构建一些层对象,已满足某些自定义网络的特殊需求。
幸运的是,Keras对自定义层提供了良好的支持。

下面对常用方法进行总结。

方法1:keras.core.lambda()

如果我们的自定义层中不包含可训练的权重,而只是对上一层输出做一些函数变换,那么我们可以直接使用keras.core模块(该模块包含常见的基础层,如Dense、Activation等)下的lambda函数:

keras.layers.core.Lambda(function, output_shape=None, mask=None, arguments=None)

参数说明:
function:要实现的函数,该函数仅接受一个变量,即上一层的输出
output_shape:函数应该返回的值的shape,可以是一个tuple,也可以是一个根据输入shape计算输出shape的函数
mask: 掩膜
arguments:可选,字典,用来记录向函数中传递的其他关键字参数

但是多数情况下,我们需要定义的是一个全新的、拥有可训练权重的层,这个时候我们就需要使用下面的方法。

方法2: 编写Layer继承类

keras.engine.topology中包含了Layer的父类,我们可以通过继承来实现自己的层。
要定制自己的层,需要实现下面三个方法

build(input_shape):这是定义权重的方法,可训练的权应该在这里被加入列表self.trainable_weights中。其他的属性还包括self.non_trainabe_weights(列表)和self.updates(需要更新的形如(tensor,new_tensor)的tuple的列表)。这个方法必须设置self.built = True,可通过调用super([layer],self).build()实现。

call(x):这是定义层功能的方法,除非你希望你写的层支持masking,否则你只需要关心call的第一个参数:输入张量。

compute_output_shape(input_shape):如果你的层修改了输入数据的shape,你应该在这里指定shape变化的方法,这个函数使得Keras可以做自动shape推断。

一个比较好的学习方法是阅读Keras已编写好的类的源代码,尝试理解其中的逻辑。

下面,我们将通过一个实际的例子,编写一个自定义层。
出于学习的目的,在该例子中,会添加一些的注释文字,用以解释一些函数功能。

该层结构来源自DenseNet,代码参考Github。

from keras.layers.core import Layer
from keras.engine import InputSpec
from keras import backend as K
try:from keras import initializations
except ImportError:from keras import initializers as initializations
# 继承父类Layer
class Scale(Layer):'''该层功能:通过向量元素依次相乘(Element wise multiplication)调整上层输出的形状。out = in * gamma + beta,gamma代表权重weights,beta代表偏置bias参数列表:axis: int型,代表需要做scale的轴方向,axis=-1 代表选取默认方向(横行)。momentum: 对数据方差和标准差做指数平均时的动量.weights: 初始权重,是一个包含两个numpy array的list, shapes:[(input_shape,), (input_shape,)]beta_init: 偏置量的初始化方法名。(参考Keras.initializers.只有weights未传参时才会使用.gamma_init: 权重量的初始化方法名。(参考Keras.initializers.只有weights未传参时才会使用.'''def __init__(self, weights=None, axis=-1, beta_init = 'zero', gamma_init = 'one', momentum = 0.9, **kwargs):# 参数**kwargs代表按字典方式继承父类self.momentum = momentumself.axis = axisself.beta_init = initializers.Zeros()self.gamma_init = initializers.Ones()self.initial_weights = weightssuper(Scale, self).__init__(**kwargs)def build(self, input_shape):self.input_spec = [InputSpec(shape=input_shape)]# 1:InputSpec(dtype=None, shape=None, ndim=None, max_ndim=None, min_ndim=None, axes=None)#Docstring:     #Specifies the ndim, dtype and shape of every input to a layer.#Every layer should expose (if appropriate) an `input_spec` attribute:a list of instances of InputSpec (one per input tensor).#A None entry in a shape is compatible with any dimension#A None shape is compatible with any shape.# 2:self.input_spec: List of InputSpec class instances# each entry describes one required input:#     - ndim#     - dtype# A layer with `n` input tensors must have# an `input_spec` of length `n`.shape = (int(input_shape[self.axis]),)# Compatibility with TensorFlow >= 1.0.0self.gamma = K.variable(self.gamma_init(shape), name='{}_gamma'.format(self.name))self.beta = K.variable(self.beta_init(shape), name='{}_beta'.format(self.name))self.trainable_weights = [self.gamma, self.beta]if self.initial_weights is not None:self.set_weights(self.initial_weights)del self.initial_weightsdef call(self, x, mask=None):input_shape = self.input_spec[0].shapebroadcast_shape = [1] * len(input_shape)broadcast_shape[self.axis] = input_shape[self.axis]out = K.reshape(self.gamma, broadcast_shape) * x + K.reshape(self.beta, broadcast_shape)return outdef get_config(self):config = {"momentum": self.momentum, "axis": self.axis}base_config = super(Scale, self).get_config()return dict(list(base_config.items()) + list(config.items()))

以上就是编写自定义层的实例,可以直接添加到自己的model中。
编写好的layer自动存放在custom_layers中,通过import调用。

from custom_layers import Scaledef myNet(growth_rate=32, \
nb_filter=64, \
reduction=0.0, \
dropout_rate=0.0, weight_decay=1e-4,...)...
x = "last_layer_name"
x = Scale(axis=concat_axis, name='scale')(x)
...model = Model(input, x, name='myNet')
return model

这篇关于[Keras] 使用Keras编写自定义网络层(layer)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114846

相关文章

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景