poj 3150 Cellular Automaton(矩阵快速幂)

2024-08-28 10:32

本文主要是介绍poj 3150 Cellular Automaton(矩阵快速幂),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://poj.org/problem?id=3150


大致题意:给出n个数,问经过K次变换每个位置上的数变为多少。第i位置上的数经过一次变换定义为所有满足 min( abs(i-j),n-abs(i-j) )<=d的j位置上的数字之和对m求余。


思路:

我们先将上述定义表示为矩阵

B = 

1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1

B[i][j] = 表示i与j满足上述关系,B[i][j] = 0表示i与j不满足上述关系。根据这个矩阵,那么样例1中1 2 2 1 2经过一次变换变成了5 5 5 5 4。


其实这也是矩阵相乘的问题,令A = 1 2 2 1 2,那么A * B = 5 5 5 5 4。那么要经过K次变换,答案无疑是 A*(B^k)mod m。

用矩阵快速幂的复杂度为 O(n^3 * log k),n最大是500,K也很大,必会TLE。logk是不会变了,优化在于n^3。仔细观察B矩阵,发现它是有规律的,它的每一行都是它上一行右移一位得到的。那么在矩阵相乘时,我们只需计算第一行,然后整个矩阵就算出来了,这样复杂度降为O(n^2 * log k)。


A这道题真是太坎坷了。在矩阵相乘时我传的两个参数是结构体,里面是500*500的数组,一运行就崩了,一直找找不到原因,最后发现传参的问题,它相当于直接把两个结构体传过去,显然太大了,随后就改成指针传参,后来因为没有释放内存,1MLE,再后来把k和d 输反了,1WA,最后终于2000+ms过了。。


#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#define LL long long
#define _LL __int64
#define eps 1e-8
#define PI acos(-1.0)
using namespace std;const int INF = 0x3f3f3f3f;
const int maxn = 510;_LL b[maxn],ans[maxn];
int n,m,k,d;
int mod;struct matrix
{_LL mat[maxn][maxn];
}a,*res;matrix *matrixMul(matrix *x, matrix *y)
{matrix *tmp;tmp = (matrix *)malloc(sizeof(matrix));memset((*tmp).mat,0,sizeof((*tmp).mat));for(int i = 0; i < 1; i++){for(int k = 0; k < n; k++){if( (*x).mat[i][k] == 0) continue;for(int j = 0; j < n; j++){(*tmp).mat[i][j] += (*x).mat[i][k] * (*y).mat[k][j];if((*tmp).mat[i][j] >= mod)(*tmp).mat[i][j] %= mod;}}}for(int i = 0; i < n; i++){for(int j = 0; j < n; j++){if(i == 0) (*x).mat[i][j] = (*tmp).mat[i][j];else (*x).mat[i][j] = (*x).mat[i-1][(j-1+n)%n];}}free(tmp);return x;
}matrix *Mul(matrix *x, int k)
{matrix *tmp;tmp = (matrix *)malloc(sizeof(matrix));memset((*tmp).mat,0,sizeof((*tmp).mat));for(int i = 0; i < n; i++)(*tmp).mat[i][i] = 1;while(k){if(k&1)tmp = matrixMul(tmp,x);x = matrixMul(x,x);k >>= 1;}return tmp;
}int main()
{while(~scanf("%d %d %d %d",&n,&m,&d,&k)){mod = m;for(int i = 0; i < n; i++)scanf("%I64d",&b[i]);for(int i = 0; i < n; i++){for(int j = 0; j < n; j++){if(min (abs(i-j),n-abs(i-j)) <= d)a.mat[i][j] = 1;else a.mat[i][j] = 0;}}res = Mul(&a,k);memset(ans,0,sizeof(ans));for(int i = 0; i < n; i++){for(int j = 0; j < n; j++){ans[i] += b[j] * ((*res).mat[j][i]);if(ans[i] >= mod)ans[i] %= mod;}}for(int i = 0; i < n-1; i++)printf("%I64d ",ans[i]);printf("%I64d\n",ans[n-1]);}return 0;
}



这篇关于poj 3150 Cellular Automaton(矩阵快速幂)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114506

相关文章

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

poj 1511 Invitation Cards(spfa最短路)

题意是给你点与点之间的距离,求来回到点1的最短路中的边权和。 因为边很大,不能用原来的dijkstra什么的,所以用spfa来做。并且注意要用long long int 来存储。 稍微改了一下学长的模板。 stack stl 实现代码: #include<stdio.h>#include<stack>using namespace std;const int M

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

poj 1502 MPI Maelstrom(单源最短路dijkstra)

题目真是长得头疼,好多生词,给跪。 没啥好说的,英语大水逼。 借助字典尝试翻译了一下,水逼直译求不喷 Description: BIT他们的超级计算机最近交货了。(定语秀了一堆词汇那就省略吧再见) Valentine McKee的研究顾问Jack Swigert,要她来测试一下这个系统。 Valentine告诉Swigert:“因为阿波罗是一个分布式共享内存的机器,所以它的内存访问

uva 10061 How many zero's and how many digits ?(不同进制阶乘末尾几个0)+poj 1401

题意是求在base进制下的 n!的结果有几位数,末尾有几个0。 想起刚开始的时候做的一道10进制下的n阶乘末尾有几个零,以及之前有做过的一道n阶乘的位数。 当时都是在10进制下的。 10进制下的做法是: 1. n阶位数:直接 lg(n!)就是得数的位数。 2. n阶末尾0的个数:由于2 * 5 将会在得数中以0的形式存在,所以计算2或者计算5,由于因子中出现5必然出现2,所以直接一