数据结构-树状数组讲解

2024-08-28 07:18

本文主要是介绍数据结构-树状数组讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

树状数组的作用:树状数组是对一个数组 改变某个元素和 求和比较实用的数据结构。其中”求和,更改“两部操做的时间复杂度都是O(log(n)),n为数组元素个数。
在解题过程中,我们有时需要维护一个数组的前缀和S[i]=A[1]+A[2]+...+A[i]。
但是不难发现,如果我们修改了任意一个A[i],S[i]、S[i+1]...S[n]都会发生变化。
可以说,每次修改A[i]后,调整前缀和S[]在最坏情况下会需要O(n)的时间。
当n非常大时,程序会运行得非常缓慢  因此,这里我们引入“树状数组”,它的修改与求和都是O(logn)的,效率非常
================================================================================================
为了便于理解,我们看下图
其中A[]代表的是原有数组,而C[]就是树状数组。C[]存的是A[i-lowbit(i)+1]~A[i]的和。这里lowbit(i)代表的是i的二进制表示中从右往左第一个1对应的值例:lowbit(6)的值为2.{此处也可以真么理解: C[i]表示A[i-2^k+1]到A[i]的和,而k则是i在二进制时末尾0的个数,   同时,我们也不难发现,这个k就是该节点在树中的高度,因而这个树的高度不会超过logn。 }所以,我们在修改A[i]的时候可以从C[i]依次向上更改调整这条路上的所有C[]值, 这个操作的复杂度在最坏情况下就是树的高度即O(logn)。  另外,对于求数列的前n项和,只需找到n以前的所有最大子树,把其根节点的C加起来即可。


         











     另外,对于求数列的前n项和,只需找到n以前的所有最大子树,把其根节点的C加起来即可。

          不难发现,这些子树的数目是n在二进制时1的个数,或者说是把n展开成2的幂方和时的项数,

          因此,求和操作的复杂度也是O(logn)。

          接着,我们考察这两种操作下标变化的规律:

          首先看修改操作:

          已知下标i,求其父节点的下标。
          我们可以考虑对树从逻辑上转化:


         如图,我们将子树向右对称翻折,虚拟出一些空白结点(图中白色),将原树转化成完全二叉树。

         有图可知,对于节点i,其父节点的下标与翻折出的空白节点下标相同。

         因而父节点下标 p=i+2^k  (2^k是i用2的幂方和展开式中的最小幂,即i为根节点子树的规模)

         即  p = i + i&(i^(i-1)) 。

         接着对于求和操作:

         因为每棵子树覆盖的范围都是2的幂,所以我们要求子树i的前一棵树,只需让i减去2的最小幂即可。

         即  p = i - i&(i^(i-1)) 。

        

         至此,我们已经比较详细的分析了树状数组的复杂度和原理。

         在最后,我们将给出一些树状数组的实现代码,希望读者能够仔细体会其中的细节。

【代码】

  求lowbit(i)


int Lowbit(int t) 

    return t & ( -t ); 

             
  求前n项和:


int Sum(int i) 

    int sum = 0; 
    while(i > 0) 
    { 
        sum += c[i]; 
        i -= Lowbit(i); 
    } 
    return sum; 


 对某个元素进行加法操作: 

void add(int i , int d) 

    while(i<= n) 
    { 
          c[i] += d; 
           i+= Lowbit(i); 
    } 
参考: http://www.cppblog.com/Ylemzy/articles/98322.html

这篇关于数据结构-树状数组讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114097

相关文章

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

Java进程CPU使用率过高排查步骤详细讲解

《Java进程CPU使用率过高排查步骤详细讲解》:本文主要介绍Java进程CPU使用率过高排查的相关资料,针对Java进程CPU使用率高的问题,我们可以遵循以下步骤进行排查和优化,文中通过代码介绍... 目录前言一、初步定位问题1.1 确认进程状态1.2 确定Java进程ID1.3 快速生成线程堆栈二、分析

javascript fetch 用法讲解

《javascriptfetch用法讲解》fetch是一个现代化的JavaScriptAPI,用于发送网络请求并获取资源,它是浏览器提供的全局方法,可以替代传统的XMLHttpRequest,这篇... 目录1. 基本语法1.1 语法1.2 示例:简单 GET 请求2. Response 对象3. 配置请求

Java Stream.reduce()方法操作实际案例讲解

《JavaStream.reduce()方法操作实际案例讲解》reduce是JavaStreamAPI中的一个核心操作,用于将流中的元素组合起来产生单个结果,:本文主要介绍JavaStream.... 目录一、reduce的基本概念1. 什么是reduce操作2. reduce方法的三种形式二、reduce

JAVA数组中五种常见排序方法整理汇总

《JAVA数组中五种常见排序方法整理汇总》本文给大家分享五种常用的Java数组排序方法整理,每种方法结合示例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录前言:法一:Arrays.sort()法二:冒泡排序法三:选择排序法四:反转排序法五:直接插入排序前言:几种常用的Java数组排序

CSS引入方式和选择符的讲解和运用小结

《CSS引入方式和选择符的讲解和运用小结》CSS即层叠样式表,是一种用于描述网页文档(如HTML或XML)外观和格式的样式表语言,它主要用于将网页内容的呈现(外观)和结构(内容)分离,从而实现... 目录一、前言二、css 是什么三、CSS 引入方式1、行内样式2、内部样式表3、链入外部样式表四、CSS 选