FlinkX断点续传原理

2024-08-28 05:32
文章标签 原理 断点续传 flinkx

本文主要是介绍FlinkX断点续传原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

FlinkX断点续传原理

声明: 前半部分官方文档+贴实现代码

前提条件

同步任务要支持断点续传,对数据源有一些强制性的要求:

  • 数据源(这里特指关系数据库)中必须包含一个升序的字段,比如主键或者日期类型的字段,同步过程中会使用checkpoint机制记录这个字段的值,任务恢复运行时使用这个字段构造查询条件过滤已经同步过的数据,如果这个字段的值不是升序的,那么任务恢复时过滤的数据就是错误的,最终导致数据的缺失或重复;
  • 数据源必须支持数据过滤,如果不支持的话,任务就无法从断点处恢复运行,会导致数据重复;
  • 目标数据源必须支持事务,比如关系数据库,文件类型的数据源也可以通过临时文件的方式支持;

配置

restore用于配置同步任务类型(离线同步、实时采集)和断点续传功能。具体配置如下所示:

"restore" : {"isStream" : false,"isRestore" : false,"restoreColumnName" : "","restoreColumnIndex" : 0,"maxRowNumForCheckpoint" : 10000
}
名称说明是否必填默认值参数类型
isStream是否为实时采集任务falseBoolean
isRestore是否开启断点续传falseBoolean
restoreColumnName断点续传字段名称开启断点续传后必填String
restoreColumnIndex断点续传字段索引ID开启断点续传后必填-1int
maxRowNumForCheckpoint触发checkpoint数据条数10000int

任务运行的详细过程

我们用一个具体的任务详细介绍一下整个过程,任务详情如下:

数据源mysql表,假设表名data_test,表中包含主键字段id
目标数据源hdfs文件系统,假设写入路径为 /data_test
并发数2
checkpoint配置时间间隔为60s,checkpoint的StateBackend为FsStateBackend,路径为 /flinkx/checkpoint
jobId用来构造数据文件的名称,假设为 abc123

1) 读取数据

读取数据时首先要构造数据分片,构造数据分片就是根据通道索引和checkpoint记录的位置构造查询sql,sql模板如下:

select * from data_test
where id mod ${channel_num}=${channel_index}
and id > ${offset}

如果是第一次运行,或者上一次任务失败时还没有触发checkpoint,那么offset就不存在,根据offset和通道可以确定具体的查询sql:

offset存在时

第一个通道:
select * from data_test
where id mod 2=0
and id > ${offset_0};第二个通道
select * from data_test
where id mod 2=1
and id > ${offset_1};

offset不存在时

第一个通道:
select * from data_test
where id mod 2=0;第二个通道
select * from data_test
where id mod 2=1;

数据分片构造好之后,每个通道就根据自己的数据分片去读数据了。

2)写数据

写数据前会先做几个操作:

  1. 检测 /data_test 目录是否存在,如果目录不存在,则创建这个目录,如果目录存在,进行2操作;

  2. 判断是不是以覆盖模式写数据,如果是,则删除 /data_test目录,然后再创建目录,如果不是,则进行3操作;

  3. 检测 /data_test/.data 目录是否存在,如果存在就先删除,再创建,确保没有其它任务因异常失败遗留的脏数据文件;

    数据写入hdfs是单条写入的,不支持批量写入。数据会先写入/data_test/.data/目录下,数据文件的命名格式为: channelIndex.jobId.fileIndex,包含通道索引,jobId,文件索引三个部分,文件最掐灭。

这篇关于FlinkX断点续传原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1113868

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、