FlinkX断点续传原理

2024-08-28 05:32
文章标签 原理 断点续传 flinkx

本文主要是介绍FlinkX断点续传原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

FlinkX断点续传原理

声明: 前半部分官方文档+贴实现代码

前提条件

同步任务要支持断点续传,对数据源有一些强制性的要求:

  • 数据源(这里特指关系数据库)中必须包含一个升序的字段,比如主键或者日期类型的字段,同步过程中会使用checkpoint机制记录这个字段的值,任务恢复运行时使用这个字段构造查询条件过滤已经同步过的数据,如果这个字段的值不是升序的,那么任务恢复时过滤的数据就是错误的,最终导致数据的缺失或重复;
  • 数据源必须支持数据过滤,如果不支持的话,任务就无法从断点处恢复运行,会导致数据重复;
  • 目标数据源必须支持事务,比如关系数据库,文件类型的数据源也可以通过临时文件的方式支持;

配置

restore用于配置同步任务类型(离线同步、实时采集)和断点续传功能。具体配置如下所示:

"restore" : {"isStream" : false,"isRestore" : false,"restoreColumnName" : "","restoreColumnIndex" : 0,"maxRowNumForCheckpoint" : 10000
}
名称说明是否必填默认值参数类型
isStream是否为实时采集任务falseBoolean
isRestore是否开启断点续传falseBoolean
restoreColumnName断点续传字段名称开启断点续传后必填String
restoreColumnIndex断点续传字段索引ID开启断点续传后必填-1int
maxRowNumForCheckpoint触发checkpoint数据条数10000int

任务运行的详细过程

我们用一个具体的任务详细介绍一下整个过程,任务详情如下:

数据源mysql表,假设表名data_test,表中包含主键字段id
目标数据源hdfs文件系统,假设写入路径为 /data_test
并发数2
checkpoint配置时间间隔为60s,checkpoint的StateBackend为FsStateBackend,路径为 /flinkx/checkpoint
jobId用来构造数据文件的名称,假设为 abc123

1) 读取数据

读取数据时首先要构造数据分片,构造数据分片就是根据通道索引和checkpoint记录的位置构造查询sql,sql模板如下:

select * from data_test
where id mod ${channel_num}=${channel_index}
and id > ${offset}

如果是第一次运行,或者上一次任务失败时还没有触发checkpoint,那么offset就不存在,根据offset和通道可以确定具体的查询sql:

offset存在时

第一个通道:
select * from data_test
where id mod 2=0
and id > ${offset_0};第二个通道
select * from data_test
where id mod 2=1
and id > ${offset_1};

offset不存在时

第一个通道:
select * from data_test
where id mod 2=0;第二个通道
select * from data_test
where id mod 2=1;

数据分片构造好之后,每个通道就根据自己的数据分片去读数据了。

2)写数据

写数据前会先做几个操作:

  1. 检测 /data_test 目录是否存在,如果目录不存在,则创建这个目录,如果目录存在,进行2操作;

  2. 判断是不是以覆盖模式写数据,如果是,则删除 /data_test目录,然后再创建目录,如果不是,则进行3操作;

  3. 检测 /data_test/.data 目录是否存在,如果存在就先删除,再创建,确保没有其它任务因异常失败遗留的脏数据文件;

    数据写入hdfs是单条写入的,不支持批量写入。数据会先写入/data_test/.data/目录下,数据文件的命名格式为: channelIndex.jobId.fileIndex,包含通道索引,jobId,文件索引三个部分,文件最掐灭。

这篇关于FlinkX断点续传原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1113868

相关文章

MySQL的隐式锁(Implicit Lock)原理实现

《MySQL的隐式锁(ImplicitLock)原理实现》MySQL的InnoDB存储引擎中隐式锁是一种自动管理的锁,用于保证事务在行级别操作时的数据一致性和安全性,本文主要介绍了MySQL的隐式锁... 目录1. 背景:什么是隐式锁?2. 隐式锁的工作原理3. 隐式锁的类型4. 隐式锁的实现与源代码分析4

MySQL中Next-Key Lock底层原理实现

《MySQL中Next-KeyLock底层原理实现》Next-KeyLock是MySQLInnoDB存储引擎中的一种锁机制,结合记录锁和间隙锁,用于高效并发控制并避免幻读,本文主要介绍了MySQL中... 目录一、Next-Key Lock 的定义与作用二、底层原理三、源代码解析四、总结Next-Key L

Spring Cloud Hystrix原理与注意事项小结

《SpringCloudHystrix原理与注意事项小结》本文介绍了Hystrix的基本概念、工作原理以及其在实际开发中的应用方式,通过对Hystrix的深入学习,开发者可以在分布式系统中实现精细... 目录一、Spring Cloud Hystrix概述和设计目标(一)Spring Cloud Hystr

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于