本文主要是介绍生成k个小于n的互不相同的随机数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
《编程珠玑》习题1.4:如果认真考虑了习题3,你将会面对生成小于n且没有重复的k个整数的问题。最简单的方法就是使用前k个正整数。这个极端的数据集合将不会明显的改变位图方法的运行时间,但是可能会歪曲系统排序的运行时间。如何生成位于0至n - 1之间的k个不同的随机顺序的随机整数?尽量使你的程序简短高效。
如下的程序产生1-n的不重复的随机数:
void swap(int *a, int *b) {int tmp = *a;*a = *b;*b = tmp;
}
void produce (int a[], int n) {int i;//对数组a依次赋一个不同的值for (i = 0; i < n + 1; i++) {a[i] = i + 1;}srand((int)time(0));//下面的语句用于产生n个不同的随机数,存于数组的0到n-1位中// i + rand() % (n - i)产生一个范围i到n的随机数//那么将这个下标的数组数据和以i为下标的数组数据swap肯定不重复for (i = 0; i < n; i++) {swap(&a[i], &a[i + rand() % (n - i)]);}
}
上面的算法复杂度为O(n);
在文章Libnids的哈希函数中,libnids的void init_hash () 函数也提供了一种产生0到11之间不重复随机数的方法,其复杂度为O(n ^ 2).
参考:
http://blog.chinaunix.net/uid-21228455-id-2406483.html
http://blog.csdn.net/wdzxl198/article/details/12000091
这篇关于生成k个小于n的互不相同的随机数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!