目标跟踪CLE绘图 OTB数据跟踪绘图 mat文件txt文件 相互转换

2024-08-28 03:38

本文主要是介绍目标跟踪CLE绘图 OTB数据跟踪绘图 mat文件txt文件 相互转换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

跟踪  OTB数据集 绘图

文章主要3个内容  

1.txt文件数据--》转换 mat文件 (在matlab上画图)

2.mat文件--》txt文件 画CLE图

3.CLE画图代码  跟踪目标中心距离误差 

1.txt文件转换成 mat文件

把python跟踪得到txt数据集 转换成 matlab使用mat文件  画图

matlab程序代码


clear;clc;
close all;
% txt路径
txt_path  = 'D:\atom\default_000\';
% mat路径
mat_path = 'D:\atom\default\';
mkdir(mat_path);
% 跟踪器名字
tracker='ATOM';txt_files = dir([txt_path '*.txt']);txt_files={txt_files.name};for i=1:numel(txt_files)region=csvread([txt_path txt_files{i}]);results{1}.type = 'rect';results{1}.res = region;results{1}.len = length(region);videoname=txt_files{i};videoname=videoname(1:length(videoname)-4);save([mat_path videoname '_' tracker '.mat'], 'results');end

把得到mat文件放入OTB下面results文件目录下  perfplot.m一下 

 

2.mat文件转换txt文件

matlab程序代码

clear;clc;
close all;
% txt路径
txt_path  = 'D:\liux_code\deep_sort_yolov3\results\txtpsps1\';
% mat路径
%mat_path = 'D:\liux_code\deep_sort_yolov3\results\mat\';
mat_path = 'D:\OTB\tracker_benchmark_v1\results\results_OPE_CVPR12\';mkdir(txt_path);
% 跟踪器名字
tracker='bacf';mat_files = dir([mat_path '*.mat']);mat_files={mat_files.name};for i=1:numel(mat_files)region=load([mat_path mat_files{i}]);results= region.results{1};results=results.res;
%     results{1}.res = region;
%     results{1}.len = length(region);videoname=mat_files{i};videoname=videoname(1:length(videoname)-4);%fid = fopen([txt_path videoname '_' tracker '.txt'] ,'wt');fid = fopen([txt_path videoname '.txt'] ,'wt');[M,N]=size(results);for m =1:Mfor n= 1:Nif n ==4 fprintf(fid,'%d',results(m,n));elsefprintf(fid,'%d\t',results(m,n));endendfprintf(fid,'\n');endfclose(fid);%save([txt_path videoname '_' tracker '.txt'  ], 'results','-ASCII', '-tabs');%'-ASCII -double'end

TRE只需要转换第一栏第一个数据集代码  

转换后这样算正常

如果出现这样的 说明你的mat文件  出现问题 在跟踪程序里需要修改

在跟踪程序中(matlab 相关滤波跟踪)

寻找box 跟踪框

box = [floor(pos([2,1])) - floor(target_sz([2,1])/2), floor(target_sz([2,1]))];rect_results(frame,:)=box;%visualization

floor是取实数 代码更改成类似的 只要跟踪结果mat文件 都是实数就可以 

得到txt跟踪数据集  我们来画CLE图像  

3.CLE绘图 

python程序代码

from pylab import *
import math
import matplotlib.pyplot as plt
import numpyimport os# calculate the Pre,CLE is CENTOR LOCATION ERROR,and it is a list
def calculatePre(CLE):res = []for thresh in range(1, 100):tmp = numpy.array(CLE)  # get the temporary variabletmp[tmp <= thresh] = 1tmp[tmp > thresh] = 0num = sum(tmp)rate = float(num) / float(tmp.size)res.append(rate)return res# 定义画中心位置误差图像的函数
def drawCLE(title, ResGroundLines, ResKcfLines, ResKcfILines,ResKcfILines2,ResKcfILines3):CleKcf = []list1 =['Car4','CarScale','Couple', 'Crossing', 'Faceocc1','Girl','Singer1','Subway','Walking','Walking2','Woman','Sylvester','Jogging-1',]# 读取groundtruth_rect里数据 CleKcfI = []                                        # 有的 , 隔开  有的是空格 隔开 CleKcfI2 = []CleKcfI3 = []num_of_frame = len(ResGroundLines)   # 帧数,去掉表头和最后一帧(主要是我结果好像少写了一帧)for index in range(1, (num_of_frame )):# 每一行拿出来,第一列是分别是 frame   x   y   width   height,分离出来并转换成数字if title  in list1:GroundPos = (ResGroundLines[index]).split('\t')else:GroundPos = (ResGroundLines[index]).split(',')#KcfPos = (ResKcfLines[index]).split('\t')KcfIPos = (ResKcfILines[index]).split('\t')# KcfIPos = KcfIPos.replace('\n')KcfIPos2 = (ResKcfILines2[index]).split('\t')KcfIPos3 = (ResKcfILines3[index]).split('\t')GroundPos = list(map(int, GroundPos))#KcfPos = list(map(int, KcfPos))KcfIPos = list(map(int, KcfIPos))KcfIPos2 = list(map(int, KcfIPos2))KcfIPos3 = list(map(int, KcfIPos3))# 提取中心位置P_G = [GroundPos[0] + GroundPos[2] / 2, GroundPos[1] + GroundPos[3] / 2]#P_K = [KcfPos[0] + KcfPos[2] / 2, KcfPos[2] + KcfPos[3] / 2]P_KI = [KcfIPos[0] + KcfIPos[2] / 2, KcfIPos[2] + KcfIPos[3] / 2]P_KI2 = [KcfIPos2[0] + KcfIPos2[2] / 2, KcfIPos2[2] + KcfIPos2[3] / 2]P_KI3 = [KcfIPos3[0] + KcfIPos3[2] / 2, KcfIPos3[2] + KcfIPos3[3] / 2]#CLE_KCF = math.sqrt((P_K[0] - P_G[0]) ** 2 + (P_K[1] - P_G[1]) ** 2)CLE_KCF_I = math.sqrt((P_KI[0] - P_G[0]) ** 2 + (P_KI[1] - P_G[1]) ** 2)CLE_KCF_I2 = math.sqrt((P_KI2[0] - P_G[0]) ** 2 + (P_KI2[1] - P_G[1]) ** 2)CLE_KCF_I3 = math.sqrt((P_KI3[0] - P_G[0]) ** 2 + (P_KI3[1] - P_G[1]) ** 2)#CleKcf.append(CLE_KCF)CleKcfI.append(CLE_KCF_I)CleKcfI2.append(CLE_KCF_I2)CleKcfI3.append(CLE_KCF_I3)plt.figure()  # CLE  CENTOR LOCATION ERRORplt.title(title + "CLE Plot")#plt.plot(CleKcf, color='red', label="atom")#####################################################plt.plot(CleKcfI, color='black', label="samf")#plt.plot(CleKcfI2, color='red', label="samfpaceauto")plt.plot(CleKcfI3, color='red', label="our")mpl.rcParams['font.sans-serif'] = ['SimHei']plt.xlabel('帧数',fontsize =13)plt.ylabel('中心位置误差',fontsize =13)plt.legend()# 保存图片plt.savefig("results//samfpsps1//" + title + ".png", dpi=600)# PreKcf = calculatePre(CleKcf)# PreKcfI = calculatePre(CleKcfI)## plt.figure()  # PRECISION PERCENT# plt.title(title + "Precision Plot")# plt.plot(PreKcf, color='red', label='atom')# plt.plot(PreKcfI, color='blue', label="bacf")# plt.legend()# plt.savefig("results//" + title + "_Pre.png", dpi=600)# 主函数
# for target in lines:# target有个回车,这里需要把这个回车给去掉,然后下面把当前target下的文件读取# AveFpsKcf = open(path + target[:-1] + ave_fps_kcf)# AveFpsKcfI = open(path + target[:-1] + ave_fps_kcf_inter)
#s = "basketball"
a = ['Jogging-1','Basketball', 'Bolt', 'Boy', 'Car4', 'CarDark', 'CarScale','Coke', 'Couple', 'Crossing', 'David2', 'David3', 'David', 'Deer','Dog1', 'Doll', 'Dudek', 'Faceocc1', 'Faceocc2', 'Fish', 'Fleetface','Football', 'Football1', 'Freeman1', 'Freeman3', 'Freeman4', 'Girl','Ironman',  'Jumping', 'Lemming', 'Liquor', 'Matrix','Mhyang', 'MotorRolling', 'MountainBike', 'Shaking', 'Singer1','Singer2', 'Skating1', 'Skiing', 'Soccer','Subway', 'Suv','Sylvester','Tiger2', 'Trellis','Walking', 'Walking2', 'Woman']  #'Jogging-1''Tiger1',path = "results//"
otbpath = "D://OTB//OTB100//"
txtfile = "txtpsps1//"
#os.makedirs(r"results//samfpsps1" )
for s in a:if s =='Jogging-1':res_ground = otbpath+'jogging'+"./groundtruth_rect.1.txt"else:res_ground = otbpath + s + "./groundtruth_rect.txt"res_bacfapceauto = "./results/" + txtfile + s +"_samfapceauto.txt"res_bacf = "./results/"+txtfile + s +"_samf.txt"res_bacfapce = "./results/" +txtfile + s +"_samfpsps1.txt"ResGround = open(res_ground)#Resatom= open(res_atom)Resbacfauto = open(res_bacfapceauto)Resbacf = open(res_bacf)Resbacfapce = open(res_bacfapce)# AveFpsKcfLines = AveFpsKcf.readlines()# AveFpsKcfILines = AveFpsKcfI.readlines()ResGroundLines = ResGround.readlines()#ResKcfLines = Resatom.readlines()ResKcfLines = 0ResKcfILines = Resbacf.readlines()ResKcfILines2 = Resbacfauto.readlines()ResKcfILines3 = Resbacfapce.readlines()target = sdrawCLE(target, ResGroundLines, ResKcfLines, ResKcfILines,ResKcfILines2,ResKcfILines3)

这篇关于目标跟踪CLE绘图 OTB数据跟踪绘图 mat文件txt文件 相互转换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1113628

相关文章

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X